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Figure 1: This is a test drawing. T am sure Inkscape will prove useful later
on, but for now just consider it a weird piece of art.

1 Lecture 1: 15 IV 2021

1.1 Motivation

Theorem 1.1 (Donaldson’s Theorem A). If X* is a smooth oriented
4-manifold such that the intersection form

Qx : H*(X;Z) — H*(X;Z) - Z
Qx(a,b) = (aUb,[X])
15 negative definite. Then Q) x 1s equivalent over 7Z to the diagonal pairing

72X %7020 5 7,
(a, b)+ a'(=Id)b

In contrast:




Theorem 1.2 (Freedman). For any symmetric bilinear unimodular
form @ over Z there exists a topological simply-connected 4-manifold X

for which Qx ~ Q.

Since there are many negative definite unimodular quadratic forms, we
obtain the following:

Corollary 1.3. There are many topological 4-manifolds which do not admit
a smooth structure.

Other results:

Theorem 1.4 (Furuta). Brieskorn homology 3-spheres generate a sub-
group Z>° C ©3 of the homology cobordism group.

Theorem 1.5 (Donaldson). The h-cobordism theorem doesn’t hold in
dimension 4.

Theorem 1.6 (Taubes). There exist infinitely many distinct smooth
structures on R*.

Note the latter is false for all R™ for n # 4!

Theorem 1.7 (Kronheimer-Mrowka, Property P). If K C S? is
a knot and K # U, U is the unknot, then there exists an irreducible repre-

sentation m (Sg) — SU(2) if 2l <2

Theorem 1.8 (Zentner). IfY # S® is a closed 3-manifold then there
exist non-trivial representations m (Y) — SL(2,C).




1.2 Fibre bundles

We'll talk about principal fibre bundles, associated vector bundles and con-

nections.
Sources include: Helga Baum: Eichfeld-theorie, Kobayashi-Monizu: Foun-

dations of Differential Geometry.

Definition 1.9 (principal fibre bundle). Let G be a Lie group.
A smooth map 7 : P — M is called a principal fibre bundle if

e (& acts freely on P from the right and is transitive on the fibres,

e 7 is locally trivial, i.e., for each x € M there is an open neighborhood
U > x and a diffeomorphism ¢ : 771(U) — U x G such that (here the
diagram comes, oh my) commutes and ¢ is G-equivariant: ¢(p) =

(m(p), h) implies ©(pg) = (7(p), hg).

Exercise 1.10. 7 admits a global trivialisation if and only if 7 : P — M
admits a section s : M — P (i.e. mos =idyy).

Example 1.11 (Hopf bundles). S*"*1 C CF! with Sl-action by multi-
plication ( S* ¢ C). Then 7 : S*"*! — CP" = §?n+1 /St = (CF1\ {0})/C*
is a principal S!'-bundle. &
Example 1.12 (quaternionic Hopf bundles). S*"*3 C H"*' S$3 C
H unit spheres. S® acts on S*"*3 in two different ways, from the right

((90,---+n): @) = (@0g; - - -, gngq) or from the left ((qo, - - -, ¢n), @) = (490, - - -, 4qn)

(note that for ¢ € S® we have ¢~ = q).
Then 7 : S#*+3 — HP" is a principal S3-bundle. In particular one gets

STrTHP! ~ S4. &
Example 1.13 (frame bundles). If 7 : E — M is a (complex, real,
hermitian, euclidean, etc.) vector bundle of rank r, then
Pr={(e1,...,e,) € E"|(e1,...,e)is a
(complex, real, unitary, orthogonal, etc.) basis of E,, = 7 *(m)}

has a G-action (GL(r,C), GL(r,R), U(r), O(r), etc.). This forms 7 : P —

M, a principal G-bundle. The action is given by (e1,...,e.)g = (D, ghi€is - - -

where g7 = (g;j)i,jzl ..... re *

Example 1.14 (homogeneous spaces). H C G closed Lie subgroup,
G/H is a homogeneous space and G — G/H is a principal H-bundle. [
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1.3 Associated bundles

Definition 1.15 (associated bundle). Let m : P — M be a principal
G-bundle. Suppose V is a vector space and p : G — Aut(V) is a group ho-
momorphism. Then P X V has a right G-action via (p,v)g = (pg, p(¢g~")v)
and 7: F=Px,G=(PxV)/G— M is the associated bundle to P and

p.

Exercise 1.16. 7 : E — M given by [p,v] — 7(p) is a vector bundle.

A tautology:
E a G-vector bundle of rank r, G(E) G-frame bundle, then G(E)x K" —
E given by [(e1,...,€.),(21,...,2.)] ¥ > zie; is an isomorphism of vector
bundles.
Further examples:
TM = GL(M) x,,,, R"

T"M = GL(M) x,  (R")
AM = GL(M) Xy no o ponn AF(R™)
Example 1.17 (tautological line bundle over CP").
H={(L&eCP" xC|¢ e}
Then

H— L
(1,6) =1

is a complex line bundle. &
On the other hand, consider 7 : S?"*! — CP", p; : S' — Aut(C)

z e (€ 2F6).

Exercise 1.18.
H~ S x, C
H* ~ 82k+1 Xp,1 C

H® ~ %+ 5 C
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Denote the Lie algebra of G by g. Then

Ad : G —Aut(G)
g (h— ghg™)

induces

ad : G —Aut(g)
g—(dAdy)e:g— g

i.e., take the differential of Ad, at e € G. Also define
ad(P) =P Xad 8-
By the way,

(dad). : g —End(g),
X~ — [X)Y]).

1.4 Connections in principal bundles

Let m: P — M a principal G-bundle. Define
VTP =ker(dr : TP — TM).
From the free G-action we get a linear map

g —>T(TP)
£ e

where £# = 4| _ (pe’®) using the e’ = exp(v) the exponential map of G.
Observe that £# € T'(VTP).

Exercise 1.19. Denote by R, the right g-action. Then the diagram com-
mutes:

lng ladgl

VTPpg (T g



Exercise 1.20. [¢,n]" = [¢7, n7]

Lemma 1.21. We get a trivialization # : P x g — VTP.

Definition 1.22 (connection). A connection on P is a dim M-
dimensional subbundle H C TP which is complementary to VTP, i.e.,
HNVTP =0 and TP = VTP + H (shortly TP = VTP ® H) and
equivariant with respect to the G-action, i.e., dR,(H) = H for any g € G.

Remark 1.23. drn|g : H — T'M is an isomorphism.

Definition 1.24 (connection 1-form). If H is a connectionon 7 : P —
M, then we define the associated connection 1-form wy € Q(P;g) by the
composition

T =il
rp, 2% yrp, Li g

Remark 1.25. wy(X#) =X

Remark 1.26. R;wH = ady,1wy by Exercise 1.19 and since H is R4
invariant.

Remark 1.27. H = ker(wy : TP — g)

Lemma 1.28. Suppose on the other hand that w € QY (P;g) satisfies
wW(X#) = X for any X € g and Riw = adgw for any g € G. Then
H, =ker(w: TP — g) is a connection.

Remark 1.29. The two constructions are inverses to each other: kerwg = H
and wy, = w.

Definition 1.30 (notation for connections). We write A for a con-
nection and H,4 or wy to make explicit its manifestation.




Definition 1.31 (horizontal forms of type p). Let a € QF(P;V) and
p: G — Aut(V). The « is called

e horizontal a(&y, ..., &) = 0 whenever any &; is vertical,
e of type p if Ria = p(g)~"' ca.

Denote horizontal forms of type p by

Qk

horiz,p

(P;V).

Proposition 1.32.

k
Qp,hom’z

(P;V) =QF(M; P x, V)

W —w

15 an tsomorphism, where
Q*(M; P x,V)=T(M;A*T*M ® P x,V)

and
Op(V1, .., 08) = [p,w(&, .-, )]
where 7(p) = x and dm,(&;) = v; for any i.

Remark 1.33. The bracket above does not denote the Lie bracket but the
equivalence class of an element in P x, V.

Proof. Independence of lifts: if dm,(§;) = dmp(€]) then & — & € VTP, so by
horizontality of w we get w(...,&,...) =w(...,&,...).
Independence of p € 771(z) follows since w is of type p. O

Suppose wy and w4 are two 1-forms. Then

wa —wa € QL (P;g)

ad,horiz

and therefore there exists a € Q4 4. (P;9) such that way = wa + a. We
conclude that

Lemma 1.34. The space of connections on P — M 1is an affine space over
Ol (P;g) ~ QY(M;ad(P)).

ad,horiz




2 Recitation 1: 20 IV 2021

2.1 Line bundles over the projective space

St <y 827+l s CP™ is an S'-bundle with action
((z0y -y 20),w) = (zow, ..., z,W)

Let

z  — mult

{51 — Aut(C)
Pk -

for k € Z. Get the associated bundle P x, C — CP", a complex line bundle.
On the other hand we have H as defined in 1.17. The claim is that
S+l . C ~ H®* where H™' is defined as H* = Homc(H, C).
Starting with p;, we define

PXC%H

l f1 //’/7 l

pPx, C——CP"

via ;
(20, 20),w) = ([20,- -5 20)s (20, - -+, 20) - W).
We directly check it descends to a bundle homomorphism. Since it is an iso-
morphism on fibers, it is a bundle isomorphism because of the general fact:
Proposition 2.1.
GL(n) — GL(n)
(Aut(V) — Aut(V))
B~ B!

is a smooth map (polynomial for U(n),O(n),...).

Similarly, for £ > 0 define

PxC % gok,
(20, -y 2r),w) = w-(2®...2).



The action of G via R, X py, gives (z,w) ~ (z - u,u'w) and fi descends to

the quotient since (zu)®* = u*z.

We turn to the case k < 0. Start with k = —1.
PxC L g
(z,w) = w-(z,—)c

This works because for v € S', @ -u = 1.

2.2 Lie bracket exercise

We wanna prove [X,Y]# = [X# Y#] as well as commutativity of the dia-
gram:

TPpTg

lng ladg -1 -

Tppg (Tg

The commutativity of the diagram is proven this way:

d

(ady- (X))}, = = tzopgetadg‘l(x)
8 e,
4 pge
= dRy(X})

Now recall that on one hand, in the Lie algebra, we have

Xy =2

dsXY
dS ae ()

s=0

and on a manifold, if ¢2 denotes the flow of £, then

) = &

—t
|, 2 (%g(p)) :

t
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We have G < P — M. Firstly we claim ¢%, = Reex:

d
Rex (p) = as|. Reivax (p)
=0
_ # _ v#
Xpe’X o XRetX (p)

because R 1s9x = Resx 0 Raix.

d
# Vv#H _ #
X#* Y#|(p) = dR,-ix <Yetx(p)>

t=0
d d
— dR Cx — tX\ sY
dt|,_, " ds|, (pe )
d d
= — R t s —t
dt . ds etXesYe X(]?)
d
= | Badxn(®)
t=0
= [X, Y] (p)

2.3 Additions to the lecture
Recall that we have d : Q*N — Q*T1N defined by

k

do(Eo, - - &0 —Z(- VEw(or o e )

+ S (GG & a i r gy &)

1<j

where & is a vector field with &(z) = & (the formula is independent of the
choice of &). In particular, for a 1-form we have

dw(&,n) = Ew(n) —nw(&) — w([&,n)).-

Notice that d does not in general preserve Q7 , . (P, V).

Example 2.2. Consider P = R x R — R given by (¢,s) — t. Then w=
f(s)dt is horizontal, but dw = 8f -ds A\ dt is not horizontal unless =0. &

11



If we have a connection A on the principal G-bundle P — M with hori-
zontal subbundle H 4, then define for o € Q(P, V) the differential

daa = daopry,
i'e'7 (dAa)<§17 v 7€k> = da (erAgla cee 7erA§k)-

Remark 2.3. daa is necessarily horizontal, whether or not o has been.

Remark 2.4. If o is of type p : G — Aut(V), then d,a is also of this type
(because H, is Rg-invariant).
In particular, get

da : Qs (PV) = QL (PV).

horiz,p

Definition 2.5. d4 is called the covariant derivative of the connection A
on P.

Remark 2.6. d*> =0, but dyody # 0 in general.

Definition 2.7. d4 descends to

(P V) — s oftL (P V)

p,horiz

b

QF(M; P x, V) =25 QMM P x, V)

which we denote by d 4.

Definition 2.8. Let E — M be a vector bundle. A map
nablaa : T(E — M) — QY(E - M) =T(T*"M ® E)
satisfying the Leibniz rule
V(fs)=df ® s+ f-Va

for any f € C*°(M) and s € I'(E) is called a covariant derivative.

12



Proposition 2.9. Let P — M be a G-principal bundle and p : G —
Aut(V), then B
da:T(M;P x,V)— QY (M; P X, V)

is a covariant derialive on the vector bundle P x, V.

Proof. Unravel the definitions. n

Definition 2.10. Let v : [0, 1] — M be a smooth path. We say s € I'(E)
is parallel with respect to V if (Vs)(%(¢)) = 0 for any ¢. Then s(y(1)) is
the result of parallel transport of s along ~.

0.

Note that for geodesics we have V(%)
On the other hand, having

G ——P

|

M

we would like to take a path in M and lift it to a horizontal path in P, to
get parallel transport. We’ll do that soon.

3 Lecture 2: 22 1V 2021

Recall we have dq = d o pry, that is dya = dav o pry.

3.1 Parallel transport

Counsider a bundle
G ——P

i

and a path v : [a,b] — M. Suppose A is a connection on P, u € 7~ (vy(a).
Then 313, : [a,b] — P such that 7,,(t) € (Ha))-

Proof: dmy, : Ha = TM.

Recall that H4 is a complement of VT'P in TP and is R,-invariant.

13




Definition 3.1 (parallel transport). We get a map

Do {W‘l(v(a)) = 77 (y(3))
7w = Fu (D)

which is called the parallel transport of v with respect to A.

Proposition 3.2 (properties of parallel transport). Par’ =

g
A A A o A
Par“ o ParW and Par7 oRy=Rg4o0 Parv.

Proof. Because H 4 is Rg-invariant. [

Exercise 3.3. If Par;4 only depends on the endpoint of ~, then the bundle
P — M is trivial and A is the trivial connection ( P ~ M x G, trivial
connection is H = priT'M.

Proof. Hint: define a global section by parallel transport. O

By Proposition 3.2 (properties of parallel transport) Parf descends to

paBA . ) Er@ = fimbg
? [p,v] > [Pari(p),v]

omE=Px,V.

Definition 3.4 (covariant constancy). Suppose V is a covariant
derivative on E — M be a smooth path. A section s € I'(E — M) is
said to be covariantly constant along v if

(Vs) (5(t)) = 0 for all ¢ € [0, 1].

Remark 3.5. This is a differential equation for 7*s on v*E — [0, 1].

14



This also gives a notion of parallel transport
parY - B0 7 By

T e — s(v(1))

(0)).

Proposition 3.6. If V4 is a covariant deriwative on E = P x,V coming
from a connection A on P, then

if s is covariantly constant along v and e = s(~y

EA _ Va
Par»® = Par 4,

i.e., the two notions coincide.

Proof.

Denote by * : I'(M; Px,V) = T,(P;V)and-: T',(P;V) - I'(M; Px,V)
the isomorphisms. . .

where 7, = 7|(04. This is because

If £5(5(¢)) = 0 for any ¢, then §(

N
—~
—
S~—
S~—
I
W>
—
N
Yy
—
N~—
N—




Now s(vy(1)) = Parva(s(y(O))) if V4 .s=0.
On the other hand

[Par}(3(0)), 5(7(0))] = Pary*(s(7(0)))

O

3.2 Curvature

Definition 3.7. Let P = M be a G-principal bundle and A a connection
on P. Then Q04 = dswa = dws o pry, is called the curvature of A.

Remark 3.8. Recall: if X is a manifold and H C T'X is a subbundle, then
H is called involutive if [n,&] C H for all vector fields n,¢ € I'(X; H).

Theorem 3.9 (Frobenius). Locally there are submanifolds Y C X such
that TY = H if and only if H s involutive.

Proposition 3.10. Q4 =0 <= H4is involutive

Proof. Let £,m € I'(P; Hy). Then

QA(S?”) = dWA(f’U)
= §wa(n) —n.wa(§) —wal[&,n])

= _wA([€7 77])
# 0 iff [, n] has a vertical component.

where we used that wa(n) = wa(§) = 0 by the definition of w,.

16




The last statement in the equation follows since wy|yrp : VI'P — P X g
is an isomorphism. O

Proposition 3.11. R;Q, = ad,—

Proof.

* —_—
RgdAwA = de 0] pI"HA @) ng
= dwa o dR, o pry since H, is G-invariant
*
= dR,wa 0 pry,
= dadg-1wa o pry,sinceRjws = ady—

= ad,—1 of24by commutativity of d and ad

O

So Q4 € 2 (P;g). Under Q2

horiz,ad horiz,ad

ds (Pi9) = *(M;ad(P)) = P xaa9)
we denote the image by Fx = Q4.

Proposition 3.12 (Cartan’s formula). Q4 = dwa + 3[wa A wa), where
the latter is a hybrid notation for [,] ® A.

Proof. Check for Q4(&, 7).

Say first &,n are both vertical vector fields, without loss of generality
&= Xf and n = Y;)#. Then LHS is identically zero since horizontal. RHS is
this.

<de + % lwa A wA]) (X*,v#)

= doa(X*,Y#) 4 Sloa(XF), wa(V )] S ua(Y#),0a(X )

= XTwa(Y?) = YFwa(X7) = wa([X*,Y7]) + [wa(X7), wa(Y7)]

= —wu([X,Y]?) + [X,Y] since wa(X#) = X and is constant
— [X,Y]+[X,Y] =0

Now let one vector field be horizontal v, that is, G-invariant horizontal

17




lift of v € T'(T'M). Again LHS is zero, and compute the RHS.

dwa (T, X7) = Tws (X7) — XFw, (D) — wa([v, X7])
(X)) — X#(0) — wa([o, X#]) = 0 since
d
dt
d
dt
=0

[wa A wa](©, X#) = 0 since  is horizontal.

[(X#, 0], = d (Re-1xUperx )

t=0

d (v,) since ¥ is a G-invariant horizontal lift
t=0

Now both are horizontal and Rg-invariant, v, w. LHS is:

QU0 D) = dwa (T, D)
= Twa(@) — wa(V) — wa([v, @)

= 0 since wy(horizontal) = 0.

RHS is
1
(de + 5[&)14 A wA])(@,IT}> = de(@,UNJ) + 0.

]

Proposition 3.13. Let a € QY(P;V). Then daa = da+ p.(wa) A where
p:G— Aut(V) and p. : g — End(V) is its derivative.

Proof. Just as with Cartan’s formula, check on pairs of vertical and horizon-
tal, horizontal and horizontal, vertical and vertical sections. O

Remark 3.14. Also true for a € QF, . (P;V), where

p,horiz

(p*(wA) A a) (607 000 7576) = Zf:o(_l)ip*(wA(fi))a(Soa 000 aéiv coc 76/6-

Recall that for any two connections A, A’ there exists a 1-form a €

ol (P;g) such that wa = wy + a.

p—eq,horiz

18




Proposition 3.15. Qa., = Q4 + daa+ 3[a A d]

Proof.
QA—i—a = de-i—a + 5 [WA—i—a A wA+a]
1
:de—l—da+§[wAAwA]
t3loana+3laAwd +zland
—[wa ANa] + =[aAw —laNa
24 2 AT
1
:QA+da—|—[wAAa]—|—§[a/\a]
1
:QA+dAa+§[a/\a]
applying the previous proposition to p = ad, p. = [—,]. a

Proposition 3.16 (Bianchi’s identity). d Q4 =0

Proof.
daQ24(&,m, ) =dQ4(E,m, ) + [wa A Q24)(§,1,A) by a Proposition

= Sdloa Awal(E,m, ) + a A dwal (6,7, )+ oa A 5 leoa Al

= ldoa Awal(. )~ gloa Adoal( )+ foa A diog](. )
+ %[WA VAN [wA /\CUA](. . )

1
= glwa Awa Awall(€,n, ).
Now without loss of generality &,m,\ = X# Y# Z# for X,Y,Z € g. So
the last term is zero because of the Jacobi identity [X,[Y, Z]] + [V, [Z, X]] +
[Z,[X,Y]] = 0. O

19
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Proposition 3.17. For a € Q... (P;V) and A a connection on P we
have dadace = p(Qa) A .

Proof.
dAdAOé = d(dCY + p*(wA) N Oé)
+ pie(wa) A (da+ pe(wa) A )by a Proposition above
= pe(dwa) N o — pu(wa) N do
+ pu(wa) ANda + pa(wa) A ps(wa) A
Now
(ps(wa) A pulwa)) (€)= (pu(wa)(€))ps(wa(n) — pulwa(n))ps(wal§))
= [pe(wa(§)), px(wa(n))] Lie bracket in End(V)
= pu([wa(§),wa(n)]) since p, is a Lie alg. homom.

1
= p, <§[wA A wA]> (&,7n) from Cartan’s formula.

The last step is the following. Write w = ) X;o; where X; € g and o; €
QLP).

Ba Awal(€m) = 31K Xl A o (€, m)

Z?]

= Z[Xi, Xjl(ai(§)ei(n) — ai(n)a;(£))

1,J

= [wa(§),wa(n)] — [wa(n),wa(§)]
= 2[wa(§),wa(n)]

which finishes the proof. O

Definition 3.18 (curvature of a covariant derivative).
The curvature of a covariant derivative V : I'(E) — I'(T*M ® E) is defined
by

RY(&,n) = VeVy =V Ve = Vi

20



Proposition 3.19. If A is a connection on P — M then on P x,V we
get a covariant derivative V4 induced from A. Then RVA = p.(F4) where
Fy e Q*(M;ad(P) =P Xaq8) and p. : g — End(V).

Proof. Exercise. O]

Next time we will consider

which is defined to be a bundle homomorphism for a Lie group homomor-
phism ¢ : G — H if f(pg) = f(p)¢(g) for any p, g.

4 Lecture 3: 29 1V 2021

¢ : g — R (or C) polynomial of degree k, alternatively ¢ : g* — R multilinear
and invariant under permutations (symmetric).
Suppose ¢ is ad-invariant:

¢(adg X17 s 7adg Xk) = (b(le B 7Xk)
forany g € G and Xy,..., X} € g.
Apply this to ¢ = !X and differentiate at t = 0. Get

d
Cdt|,,
= o([X, Xa], Xo, .., Xi) + (X, [ X, Xo], X3, ., Xk) + ...

0 ¢(adetx Xl, . ,adetx Xk) (1)

Let A be a connection on P — M, define

co(A) = p(QaN ... ANQ4) € Q. (P)

horiz

where the curvature €4 of A is exterior multiplied 2k times.
Two facts from last time: d 24 = 0 (Bianchi identity) and if o €
Qhorizp(P; V) then
daa = doa+ p(wa) N (2)

(using a hybrid notation at the end, where p, : g — End(V)).
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Proposition 4.1. c4(A) is closed and for any other connection A" on P the
difference cg(A) — cy(A') is exact, hence [cy(A)] € H**(P;R) is independent
of A.

Proof.

dep(A) = P(dQAN QAN ANQA)+ P QANdQANAQs A L. QY)
=k-p(dQaNQaN...Qy)
=k-o((dQs + [wa AQa) AQa A ... AQy)
=k-o(daQQaNQan...)
= 0 by Bianchi identity

Indeed, (1) implies
0=0d(wa AQAJAQAN ... AQA) + QAN [wa AQA] A AQA) + ...

]

Let A’ be another connection, a = A’ — A € Q} (P;g). Then A, =

horiz,ad

A+ ta is a path of connections from A to A’. Then
1,
Qq, =04+ dA(ta) + §t [a A a]

d
— %QAt = dACL—Ft[CL/\CL]

= dAtCL

Lemma 4.2. If B € Q.. (P;R) is G-invariant, then dyB = dB.

horiz

Proof. Use (2) with p trivial. O
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d A4,

EC(ﬁ(At) :k’qb( dt /\QAt/\"‘/\QAt)

= k‘-gb(dAta/\QAt /\---/\QAt)-
=k- dAtqb(CL/\QAt VAN /\QAt) by Bianchi
=k-dp(aNQa, N...NQa,) by Lemma

—> cs(A") — cy(A) :d<k:/01 dla N Qy, /\.../\QAt)).

This finishes the proof of the proposition.

Example 4.3. If g matrix Lie algebra of a matrix Lie group G, then det(¢-
Id+ X) = >, t*¢x(X) and ¢y, is an adg-invariant polynomial of degree
tk(G) — k. &
Example 4.4. G =U(1) then g =u(l) =iR. [

Remark 4.5. Tf P = M x G is the trivial bundle, then it admits the trivial

connection pri7’M which has 0 curvature (is integrable).
This implies [¢,] = 0 for any ¢ in this case.

Lemma 4.6. If p: G — Aut(V) is trivial, then
Q (Ma P Xp V) = QZoriz,p(P; V)
given by m*.

Notice that dr* = 7*. Therefore there exists a unique class ¢4(A) €
Q(M;R) such that 7%¢4(A) = cs(A). In fact ¢4(A) = ¢(Fs A ... A\ Fa where
Fy € Q*(M;ad(P)).

Example 4.7.
Ste——n 53
SZ
Hopf fibration given by C 3 (2,w) — [z : w| € CP'. We will apply the above
to C¢(A) = _ﬁQA S Q2(53;R).
The ad-action is trivial for G = S.
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Anyway, what is [¢4(A)] € H33(S%*R)? we have the deRham isomor-
phism HZ;(S?) — R given by [w] — [, w. Chart for CP! is
é:C — CP!
i w1
Then ¢(C) = CP'\ {[1: 0]}.
Exercises:
wa = wdw + Zdz
Oy =dy
=dw ANdw+dz N\dz
= —dwANdw—dzNdz.
Need to find Fy € Q2(S?;4R) such that 7*F4 = Q4. We will express Fy

through the chart f.
We are looking for a section:

mH(¢(C)) € &

0N
sl |m

\

\

¢(C)
and in fact FA|¢(CC) = s*(04 because then 7 Fy = 7*s*Q4 = Q4 because
something.
T (¢(C)) c 5°
c - gb\(lC) c 53
A candidate is s([u : 1]) = —“2_ Note it is well-defined since s(p) =

Va2 +1

(¢_1(p)71) . NOW take FA = S*QA and thuS (b*FA == ¢*S*QA = (S o ¢)*QA
[o=1(p)I2+1

and s o ¢(u) = \/(|Z\12—)+1 Get

(Soqb)*QA: —<d<m) /\d(m)) ‘I’O




J U du 1 wdu+ udu
p— —_ —U—
Vi +1 uZ+1 2 (Jul*+1)%2

and similarly for w. At the end

dundu 1  |ul? 1 uf _
Oy = — - dundi— = _qund
(s0¢)* Oy W1 2 (a £ 1) u N du W+ 172 u A du+0
__( du N du )
 \(Jut + 1)
and thus
1 1
/ (——.FA)Z / (——.FA)
cpl 271'2 #(C) 27TZ
1
— _— *F
/(C< 27m'¢ A)
_/L du A di
S 2mi (1 + |ul?)?
__/l dx N dy
o Jem (14 [uf?)?
1 [ © rdr
= —— —|d
- (/ <1+r2>2) v
1/ -1\
()
— 1
Conclusion: —1 = [c¢(Hopf bundle)] € H3z (CP"). &

4.1 Reduction and extension of the structure group

Let A : H — G be a Lie group homomorphism. Let 7 : P — M be a principal
G-bundle.
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Definition 4.8. A A-reduction of P is a principal H-bundle 7’ : Q) — M
together with a map f : QQ — P satisfying:

Q J > P
M
is commutative,

e f(ph) = f(p)A(h) for any p € Q,h € H (i.e., of type A).

Example 4.9. SO(M) — GI(M) inclusion of the oriented orthonormal
frame bundle is a SO(n)-reduction of the frame bundle of M (exists if T'M
is orientable). &

Remark 4.10. P admits a A-reduction iff there exists cocycles (g;x) coming
from cocycles hy, : U; N Up — H such that g = A(hi)-

Example 4.11.

A St St

Z|—>22

Claim: the Hopf bundle S* — S? does not admit a A-reduction.

Exercise. Use Chern classes later on. &
Example 4.12. A U(n)-principal bundle P — M admits a reduction to
a SU(n)-principal bundle iff P X 4¢ C is the trivial bundle. &

By the way, if we consider the unique connected double cover Spin(n) —
SO(n) then a SO(n)-bundle admits a reduction to a Spin(n)-bundle if ws (P X cap,
R?) = 0.

5 Exercise session 4 V 2021

We proved a proposition first.
Then we proved this:
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Proposition 5.1. If E =P x,V, A a connection on P, then

Proof.

This implies
(Y (v w2)i ) (1) = Y (03, 0,)[p, 6]

= [p, (0p(0.0) = Wp.(0.¢) — [0, w],.2)(p)] by (¥)

— b, ([5,].% — v, w],2) ()]
The commutator [0, w] does not need to be horizontal since H4 may not be
involutive, but dr([0,w]) = [dn(0),dr(0)] — [v, w] = dr([v,w]). So we get

= [p, My ([0, w]).¢)(p)

= —[p,wa([v, ﬁ)])f.gb] by definition of wx

= _[pv QA(~,IE)#.Q5]
And note that du
d A
~ _ e QA (D, )
Q4(0,0)7.¢(p) = — tzos@(pe )
_ d —tQA(’fJ,’LZJ)
I (e )
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And we end with
= [p, p<(Qa(0,10))@(p)]
and thus
RY" (vs,w2)[p, $(0)] = [P, p((5,0)) ¢ (p)

]

Fill in using https://drive.google.com/file/d/1MSc7NIcqWuKAHvGQv4rbwGx6TBQS07No/
view.

6 Lecture 4: 6 V 2021

Example 6.1. Of a reduction. The tangent bundle to CP? admits a re-
duction with respect to St — S, z — 22, and thus a spin structure. ' 3

Definition 6.2. In the above situation (previous lecture), P is called
a A\-extension of Q).

Extensions always exist. Indeed, let us take

H—— Q@

|

M
and A : H — G. Then taking P = Q x G/H where H acts by

(h,(g,9)) = (gh, A(h)g).

The right G-action on P is induced from

((2,9):9") = (¢,99)-

Then f:Q — P of type A is given by f(q) = [q, €].
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6.1 Reductions, extensions and connections

Proposition 6.3. Let

Q A > P
TQ
\ %
M

and [ be of type A : H — G. Let A be a connection on (). Then there is
a unique connection A" on P such that dfy((Ha)q) = (Ha') g € TP for any
q. Thus satisfies:
ffwa = A owaq, (3)
f*QA/ = )\* o QA. (4)

Here )\, : g — b s the associated Lie algebra homomorphism.

Proof. Let p = f(q)g. Define

(Ha), = dR, (df,((Ha),) )

Check that this is independent of ¢ with the property mp(p) = mg(q) (this
uses the H-invariance of H, and the fact that f is of type .
The H 4 then are clearly G-invariant and they form a complement:

mpo f=mg

—> (d7p) 5y © Ufgls = TMry(q)

so df, <(HA)q> is a complement to V1P = ker(dmp) ;. So Ha is a con-

nection. Uniqueness follows from the required G-invariance.
Consider X € b.

(f*wa)(X*) = wa(df (X*)) by definition.
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dfq<X#) =

This proves the first formula, (3). The second formula, (4), follows from this
and

1
QA’ = dWA/ + §[wA’ A WA/]
1
. f*QA’ = df*LLJA/ + é[f*wA/ A f*wA/}

1
= d)\*WA + §[>\*WA VAN )\*wA]

= A\.Q24 because A, is a Lie alg. hom.

]

Definition 6.4. A’ is called the M-extension of A and A the A-reduction
of A’

Proposition 6.5. Let

Q i > P
TQ
M

be a morphism of type A : H — G such that \, is a Lie algebra isomorphism.
Suppose Ais a connection on P. then there exrists a unique connection A’
denoted by f*A such that ffwa = A\war.
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Proof. Define
wa = Ao frwus € Q(Q;h).

For instance, this applies to
Spin(n) 25 SO(n)
Spin¢(n) LN SO(n) x S*

both inducing Lie algebra isomorphisms.

Definition 6.6 (bundle isomorphism). A bundle homomorphism f of
type idg is called a bundle isomorphism. In particular, f : P — P of type
id¢ is called a bundle automorphism.

Definition 6.7 (gauge group). Aut(P) = {f: P — P of type idg} is
called the gauge group of P.

Remark 6.8.
Aut(P) ~ C¥ (P;G)
= {¢: P — Gle(pg) = Ady o(p)(= g7 0(P)9) Vs }
Indeed, given ¢ we set f(p) = pe(p) and get f(pg) = pge(pg) =

pgg 'e(p)g = f(p)g.
In other words,

Note Ad(P) is not a principal G-bundle.

Proposition 6.9. Let f € Aut(P) and ¢y : P — G be the associated map.
Then f*A (defined by wpa = f*wa) satisfies:

1. wpeq = Ady-1wa+ @t (the last one is left multiplication in the Lie
group),

2 df*A — f* o dA o (f*)‘l’ Qf*A = Adw;l OQA.
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Proof. Exercise. (Baum, Thm 3.22) O

6.2 Chern-Weil theory again

G ——P

|

M

principal bundle. Consider ¢ : g* — C which is Ad-invariant and symmetric.
Get

C¢<A) = QS(Q;\Xk) € Q%ngriz,G—invt(P; (C)
We have seen dcy(A) = 0 and cy(A’) = cg(A) € dD . g inut(P3 R).

Lemma 6.10. Q. o ;...(P;C) = Q*(M;C) where the inverse map is
given by m*.

Thus there is ¢4(A) such that 7°¢4(A) = ¢,(A), and we define

co(P) = [co(A)] € H**(M;C).

Definition 6.11 (Weil homomorphism). We get the Weil
homomorphism

Wp : 5¢(8) — Hap(M;C)
Qb — C¢(P)

defined on the algebra of symmetric multilinear forms.

Definition 6.12. Given f : N — M, we call f*P = {(n,p) € N x P|
f(n) =m(p)} the pull-back bundle, and get

P f(n,p)=p p
N— s m
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Proposition 6.13. If A is a connection on P, then there is a unique con-
nection A" on f*P such that way = f*wy.

Proof. Define it by this formula, wy = f*wA. Check:

wa(X#) = wa((f.X*)
=wa(X*) = X.

]

Theorem 6.14 (functoriality of the Weil homomorphism). For the
Weil homomorphism we have

1. cy(f*P) = frcy(P) (or, Wyp = f*Wp),
2. if

Q ! , P
M
and w of type X, ¢ € S&(g) and ¢ = po N € SE(D), then ¢y, (Q) =
co(P) (i.e., Wp(@) o A\ = Wg(y)).

Proof. (1) follows from the previous proposition:

ol fP) = [2s(F74)]
= [f*csl4)]
= f7cs(P)

(2) as well, use the above proposition with the push-forward connection
and notice f induces id on M. O]

Remark 6.15. It can be shown that any principal G-bundle admits a re-
duction to a maximal compact subgroup (e.g., U(n) C GL(n,C)).
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6.3 Chern classes of vector bundles

U(n) ={B € GL(n,C)|B*B = id}
u(n) ={X € gl(n,C)|X* = -X}

Definition 6.16. ¢ : gl(n,C) — C is given by

det(t——X) Z¢> X))k,

Then ¢, are Ad-invariant and ¢y |y(») take real values. (proof: det (t — ﬁX ) =
det(t + ﬁfﬁ — det (t — 5= X)).

27

A
Any X € u(n) is diagonalizable, X = ( ' . \ ) Thus
1 - A
det|t ——X | = t—
¢ ( 2mi ) E( 27Ti)
which implies that
1
61(X) = —5 tr(X)
i

and

(S -£)
_ #(m(x?) — tr(X) tr(X))

and so on, to

Theorem 6.17. The elements ¢o,...,¢n € Symy, (u(n)) are alge-
braically independent and generate Symy;,, (u(n)).
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Proof. ¢3(X) = (—55)ok(A1, ..., An), where oy, is the k-th elementary sym-

21
metric polynomial. These symmetric polynomials have the required prop-

erty. L]

Theorem 6.18. Let F = P X
Then

C", where P is a principal U(n)-bundle.

Pcan

cr(E) = [pr(Fa N ... NFyp))] € HI%(M;R)
is the image of the Chern class under

H?*(X;7Z) — H*(X;R) ~ H2%(X).

The element

o(E) = [det(l - ZLMFA)}
— ¢o(E) +c1(E) + . .. cn(E)

is called the total Chern class.

Proof. Sketch. Chern classes are characterized by the axioms:
o ¢1(Fy) =c1(Ey) if By ~ Es,
o ¢(f*E) = f*c(E) for any f: N — M,
e ¢(E) @ Es) =c(F) - ¢(Es), (cup product)
o cn(E") = (—1)Fe(E), ¢(C") =1,

(c1(H),[CP') = —1 where H — CP! is the tautological line bundle.

The first two follow from the functoriality of the Weil homomorphism,
Theorem 6.14.

When E; & E5 has a reduction to a GL(n;, C) x GL(ng, C)-bundle, take
a connection respecting this reduction and apply Theorem 6.14.

35




E* is associated to the dual representation U(n) — (C")", (pean)* :
u(n) — gl(n,C) mapping X — X* = —X.
We have verified ¢;(H) = —1 last time. O

Example 6.19. ¢ (EF) = —5& [tr(F4)]
¢2(E) = g [tr(Fa A Fa) — tr(Fa) Atr(Fa)] &

Remark 6.20. If we have a reduction to SU(n), then ¢ (E) = 0.

Proof. ¢1]sum) = —2%”. tT |su(n) = 0 since elements in su(n) are traceless. [

6.4 Pontryagin classes

Definition 6.21 (Pontryagin classes). If E — M is a real vector
bundle, then py(E) = (—1)*co,(E) is a Pontryagin class.
The total Pontryagin class is p(E) = 1+ py(E) + ... € His(M;R).

Theorem 6.22. These can be obtained by the above approach from

det(t — 5 X) = Xj_ovn(X)t"™" on glln) and Yasrley = 0 for any
k, where o(n) is the Lie algebra of O(n) = {A|AA" =id}, so o(n) =

{X|X"=-X}.
For instance tr(X) = tr(X") = tr(—=X) = —tr(X) which implies
tr(X) = 0.

Random notes

Remind Raphael about recording if needed.

Raphael’s lecture notes are available at
https://drive.google.com/file/d/10F8GW2ad0rY9Y0Q1UyJbJ1s_GGPINasb/
view?7usp=sharing.
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