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Figure 1: This is a test drawing. I am sure Inkscape will prove useful later
on, but for now just consider it a weird piece of art.

1 Lecture 1: 15 IV 2021

1.1 Motivation

Theorem 1.1 (Donaldson's Theorem A). If X4 is a smooth oriented
4-manifold such that the intersection form

QX : H2(X;Z)→ H2(X;Z)→ Z

QX(a, b) = 〈a ∪ b, [X]〉

is negative de�nite. Then QX is equivalent over Z to the diagonal pairing

Zb2(X)×Zb2(X) → Z
(a, b) 7→ at(−Id)b

In contrast:
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Theorem 1.2 (Freedman). For any symmetric bilinear unimodular
form Q over Z there exists a topological simply-connected 4-manifold X
for which QX ' Q.

Since there are many negative de�nite unimodular quadratic forms, we
obtain the following:

Corollary 1.3. There are many topological 4-manifolds which do not admit
a smooth structure.

Other results:

Theorem 1.4 (Furuta). Brieskorn homology 3-spheres generate a sub-
group Z∞ ⊆ Θ3

Z of the homology cobordism group.

Theorem 1.5 (Donaldson). The h-cobordism theorem doesn't hold in
dimension 4.

Theorem 1.6 (Taubes). There exist in�nitely many distinct smooth
structures on R4.

Note the latter is false for all Rn for n 6= 4!

Theorem 1.7 (Kronheimer-Mrowka, Property P). If K ⊆ S3 is
a knot and K 6= U , U is the unknot, then there exists an irreducible repre-

sentation π1

(
S3
p
q

)
→ SU(2) if

∣∣∣pq ∣∣∣ ≤ 2.

Theorem 1.8 (Zentner). If Y 6= S3 is a closed 3-manifold then there
exist non-trivial representations π1(Y )→ SL(2,C).
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1.2 Fibre bundles

We'll talk about principal �bre bundles, associated vector bundles and con-
nections.

Sources include: Helga Baum: Eichfeld-theorie, Kobayashi-Monizu: Foun-
dations of Di�erential Geometry.

De�nition 1.9 (principal �bre bundle). Let G be a Lie group.
A smooth map π : P →M is called a principal �bre bundle if

� G acts freely on P from the right and is transitive on the �bres,

� π is locally trivial, i.e., for each x ∈M there is an open neighborhood
U 3 x and a di�eomorphism ϕ : π−1(U)→ U×G such that (here the
diagram comes, oh my) commutes and ϕ is G-equivariant: ϕ(p) =
(π(p), h) implies ϕ(pg) = (π(p), hg).

Exercise 1.10. π admits a global trivialisation if and only if π : P → M
admits a section s : M → P (i.e. π ◦ s = idM).

Example 1.11 (Hopf bundles). S2n+1 ⊆ Ck+1 with S1-action by multi-
plication ( S1 ⊂ C). Then π : S2n+1 → CP n = S2n+1/S1 = (Ck+1 \ {0})/C∗
is a principal S1-bundle. ♣
Example 1.12 (quaternionic Hopf bundles). S4n+3 ⊆ Hn+1, S3 ⊂
H unit spheres. S3 acts on S4n+3 in two di�erent ways, from the right
((q0, . . . , qn), q) 7→ (q0q, . . . , qnq) or from the left ((q0, . . . , qn), q) 7→ (q̄q0, . . . , q̄qn)
(note that for q ∈ S3 we have q−1 = q̄).

Then π : S4n+3 → HP n is a principal S3-bundle. In particular one gets
S7πHP 1 ' S4. ♣
Example 1.13 (frame bundles). If π : E → M is a (complex, real,
hermitian, euclidean, etc.) vector bundle of rank r, then

PE = {(e1, . . . , er) ∈ Er|(e1, . . . , er)is a

(complex, real, unitary, orthogonal, etc.) basis of Em = π−1(m)}
has a G-action (GL(r,C), GL(r,R), U(r), O(r), etc.). This forms π : PE →
M , a principalG-bundle. The action is given by (e1, . . . , er)g = (

∑r
i=1 g

′
1iei, . . . ,

∑r
i=1 g

′
riei)

where g−1 = (g′ij)i,j=1,...,r. ♣
Example 1.14 (homogeneous spaces). H ⊆ G closed Lie subgroup,
G/H is a homogeneous space and G→ G/H is a principal H-bundle. ♣
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1.3 Associated bundles

De�nition 1.15 (associated bundle). Let π : P → M be a principal
G-bundle. Suppose V is a vector space and ρ : G→ Aut(V ) is a group ho-
momorphism. Then P ×V has a right G-action via (p, v)g = (pg, ρ(g−1)v)
and π : E = P ×ρG = (P ×V )/G→M is the associated bundle to P and
ρ.

Exercise 1.16. π : E →M given by [p, v] 7→ π(p) is a vector bundle.

A tautology:
E a G-vector bundle of rank r, G(E) G-frame bundle, then G(E)×GKr →

E given by [(e1, . . . , er), (z1, . . . , zr)] 7→
∑
ziei is an isomorphism of vector

bundles.
Further examples:

TM = GL(M)×ρcan Rn

T ∗M = GL(M)×ρ∗can (Rn)∗

ΛkM = GL(M)×ρcan∧...∧ρcan Λk(Rn)∗

Example 1.17 (tautological line bundle over CP n).

H = {(l, ξ) ∈ CP n × Cn+1|ξ ∈ l}

Then

H → L

(l, ξ) 7→ l

is a complex line bundle. ♣
On the other hand, consider π : S2n+1 → CP n, ρk : S1 → Aut(C)

z 7→ (ξ 7→ zkξ).

Exercise 1.18.

H ' S2k+1 ×ρ1 C

H∗ ' S2k+1 ×ρ−1 C

H⊗l ' S2k+1 ×ρk C
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Denote the Lie algebra of G by g. Then

Ad : G→Aut(G)

g 7→(h 7→ ghg−1)

induces

ad : G→Aut(g)

g 7→(dAdg)e : g→ g

i.e., take the di�erential of Adg at e ∈ G. Also de�ne

ad(P ) = P ×ad g.

By the way,

(d ad)e : g→End(g),

X 7→(Y 7→ [X, Y ]).

1.4 Connections in principal bundles

Let π : P →M a principal G-bundle. De�ne

V TP = ker(dπ : TP → TM).

From the free G-action we get a linear map

g→Γ(TP )

ξ 7→ξ#

where ξ#
p = d

dt

∣∣
t=0

(ρetξ) using the ev = exp(v) the exponential map of G.

Observe that ξ# ∈ Γ(V TP ).

Exercise 1.19. Denote by Rg the right g-action. Then the diagram com-
mutes:

V TPp g

V TPpg g

dRg

#

adg−1

#
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Exercise 1.20. [ξ, η]# = [ξ#, η#]

Lemma 1.21. We get a trivialization # : P × g→ V TP .

De�nition 1.22 (connection). A connection on P is a dimM -
dimensional subbundle H ⊂ TP which is complementary to V TP , i.e.,
H ∩ V TP = 0 and TP = V TP + H (shortly TP = V TP ⊕ H) and
equivariant with respect to the G-action, i.e., dRg(H) = H for any g ∈ G.

Remark 1.23. dπ|H : H → TM is an isomorphism.

De�nition 1.24 (connection 1-form). If H is a connection on π : P →
M , then we de�ne the associated connection 1-form ωH ∈ Ω1(P ; g) by the
composition

TPp
pr||H−−−→ V TPp

(#)−1

−−−→
'

g

Remark 1.25. ωH(X#) = X

Remark 1.26. R∗gωH = adg−1 ωH by Exercise 1.19 and since H is Rg-
invariant.

Remark 1.27. H = ker(ωH : TP → g)

Lemma 1.28. Suppose on the other hand that ω ∈ Ω1(P ; g) satis�es
ω(X#) = X for any X ∈ g and R∗gω = adg−1 ω for any g ∈ G. Then
Hω = ker(ω : TP → g) is a connection.

Remark 1.29. The two constructions are inverses to each other: kerωH = H
and ωHω = ω.

De�nition 1.30 (notation for connections). We write A for a con-
nection and HA or ωA to make explicit its manifestation.
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De�nition 1.31 (horizontal forms of type ρ). Let α ∈ Ωk(P ;V ) and
ρ : G→ Aut(V ). The α is called

� horizontal α(ξ1, . . . , ξk) = 0 whenever any ξi is vertical,

� of type ρ if R∗gα = ρ(g)−1 ◦ α.

Denote horizontal forms of type ρ by

Ωk
horiz,ρ(P ;V ).

Proposition 1.32.

Ωk
ρ,horiz(P ;V )

−−→Ωk(M ;P ×ρ V )

ω 7→ω̄

is an isomorphism, where

Ωk(M ;P ×ρ V ) = Γ(M ; ΛkT ∗M ⊗ P ×ρ V )

and
ω̄x(v1, . . . , vk) = [p, ω(ξ1, . . . , ξk)]

where π(p) = x and dπp(ξi) = vi for any i.

Remark 1.33. The bracket above does not denote the Lie bracket but the
equivalence class of an element in P ×ρ V .

Proof. Independence of lifts: if dπp(ξi) = dπp(ξ
′
i) then ξi − ξ′i ∈ V TP , so by

horizontality of ω we get ω(. . . , ξi, . . .) = ω(. . . , ξ′i, . . .).
Independence of p ∈ π−1(x) follows since ω is of type ρ.

Suppose ωA and ωA′ are two 1-forms. Then

ωA − ωA′ ∈ Ω1
ad,horiz(P ; g)

and therefore there exists a ∈ Ω1
ad,horiz(P ; g) such that ωA′ = ωA + a. We

conclude that

Lemma 1.34. The space of connections on P →M is an a�ne space over
Ω1

ad,horiz(P ; g) ' Ω1(M ; ad(P )).
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2 Recitation 1: 20 IV 2021

2.1 Line bundles over the projective space

S1 ↪→ S2n+1 → CP n is an S1-bundle with action

((z0, . . . , zn), w) 7→ (z0w, . . . , znw)

Let

ρk :

{
S1 → Aut(C)

z 7→ multzk

for k ∈ Z. Get the associated bundle P×ρkC→ CP n, a complex line bundle.
On the other hand we have H as de�ned in 1.17. The claim is that

S2k+1 ×ρk C ' H⊗k, where H−1 is de�ned as H∗ = HomC(H,C).
Starting with ρ1, we de�ne

P × C H

P ×ρ1 C CP n

f1

f1

via
((z0, . . . , zr), w)

f1−→ ([z0, . . . , zr], (z0, . . . , zr) · w).

We directly check it descends to a bundle homomorphism. Since it is an iso-
morphism on �bers, it is a bundle isomorphism because of the general fact:

Proposition 2.1.

GL(n)→ GL(n)

(Aut(V )→ Aut(V ))

B 7→ B−1

is a smooth map (polynomial for U(n),O(n), . . .).

Similarly, for k > 0 de�ne

P × C fk−→ H⊗k,

((z0, . . . , zr), w) 7→ w · (z ⊗ . . . z).
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The action of G via Rg × ρk gives (z, w) ' (z · u, u−1w) and fk descends to
the quotient since (zu)⊗k = ukz.

We turn to the case k < 0. Start with k = −1.

P × C f−1−−→ H∗

(z, w) 7→ w · 〈z,−〉C

This works because for u ∈ S1, u · u = 1.

2.2 Lie bracket exercise

We wanna prove [X, Y ]# = [X#, Y #] as well as commutativity of the dia-
gram:

TPp g

TPpg g

dRg

#

adg−1

#

.

The commutativity of the diagram is proven this way:

(adg−1(X))#
pg

=
d

dt

∣∣∣∣
t=0

pget adg−1 (X)

=
d

dt

∣∣∣∣
t=0

pgg−1esXg

=
d

ds

∣∣∣∣
s=0

pesXg

=
d

ds

∣∣∣∣
s=0

Rg(pe
sX)

= dRg(X
#
p )

Now recall that on one hand, in the Lie algebra, we have

[X, Y ] =
d

ds

∣∣∣∣
s=0

adesX (Y )

and on a manifold, if φtξ denotes the �ow of ξ, then

[ξ, η](p) =
d

dt

∣∣∣∣
t=0

dφ−tξ

(
ηφtξ(p)

)
.
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We have G ↪→ P →M . Firstly we claim φt
X# = RetX :

RetX (p) =
d

ds

∣∣∣∣
s=0

Re(t+s)X (p)

= X#
petX

= X#
R
etX

(p)

because Re(t+s)X = ResX ◦RetX .

[X#, Y #](p) =
d

dt

∣∣∣∣
t=0

dRe−tX

(
Y #
etX(p)

)
=

d

dt

∣∣∣∣
t=0

dRe−tX
d

ds

∣∣∣∣
s=0

(
petX

)
esY

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

RetXesY e−tX (p)

=
d

dt

∣∣∣∣
t=0

Rad
etX

(Y )(p)

= [X, Y ]#(p)

2.3 Additions to the lecture

Recall that we have d : Ω∗N → Ω∗+1N de�ned by

dω(ξ0, . . . , ξk) =
k∑
i=0

(−1)iξ̃iω(ξ̃0, . . . ,
ˆ̃ξi, . . . , ξ̃k)

+
∑
i<j

(−1)i+jω([ξ̃i, ξ̃j], ξ̃0, . . . ,
ˆ̃
ξi, . . . ,

ˆ̃
ξj, . . . , ξ̃k)

where ξ̃i is a vector �eld with ξ̃i(x) = ξi (the formula is independent of the
choice of ξ̃i). In particular, for a 1-form we have

dω(ξ, η) = ξω(η)− ηω(ξ)− ω([ξ, η]).

Notice that d does not in general preserve Ω∗ρ,horiz(P, V ).

Example 2.2. Consider P = R × R → R given by (t, s) 7→ t. Then ω =
f(s)dt is horizontal, but dω = ∂f

∂s
ds ∧ dt is not horizontal unless ∂f

∂s
≡ 0. ♣
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If we have a connection A on the principal G-bundle P → M with hori-
zontal subbundle HA, then de�ne for α ∈ Ω(P, V ) the di�erential

dAα = dα ◦ prHA

i.e., (dAα)(ξ1, . . . , ξk) = dα
(
prHAξ1, . . . , prHAξk

)
.

Remark 2.3. dAα is necessarily horizontal, whether or not α has been.

Remark 2.4. If α is of type ρ : G→ Aut(V ), then dAα is also of this type
(because HA is Rg-invariant).

In particular, get

dA : Ωk
horiz,ρ(P, V )→ Ωk+1

horiz,ρ(P, V ).

De�nition 2.5. dA is called the covariant derivative of the connection A
on P .

Remark 2.6. d2 = 0, but dA ◦ dA 6= 0 in general.

De�nition 2.7. dA descends to

Ωk
ρ,horiz(P ;V ) Ωk+1

ρ,horiz(P ;V )

Ωk(M ;P ×ρ V ) Ωk+1(M ;P ×ρ V )

dA

−,' −,'

dA

which we denote by dA.

De�nition 2.8. Let E →M be a vector bundle. A map

nablaa : Γ(E →M)→ Ω1(E →M) = Γ(T ∗M ⊗ E)

satisfying the Leibniz rule

∇(fs) = df ⊗ s+ f · ∇a

for any f ∈ C∞(M) and s ∈ Γ(E) is called a covariant derivative.
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Proposition 2.9. Let P → M be a G-principal bundle and ρ : G →
Aut(V ), then

dA : Γ(M ;P ×ρ V )→ Ω1(M ;P ×ρ V )

is a covariant derivative on the vector bundle P ×ρ V .

Proof. Unravel the de�nitions.

De�nition 2.10. Let γ : [0, 1]→M be a smooth path. We say s ∈ Γ(E)
is parallel with respect to ∇ if (∇s)(γ̇(t)) = 0 for any t. Then s(γ(1)) is
the result of parallel transport of s along γ.

Note that for geodesics we have ∇γ̇(t)γ̇(t) ≡ 0.
On the other hand, having

G P

M

we would like to take a path in M and lift it to a horizontal path in P , to
get parallel transport. We'll do that soon.

3 Lecture 2: 22 IV 2021

Recall we have dA = d ◦ prA, that is dAα = dα ◦ prA.

3.1 Parallel transport

Consider a bundle
G P

M

π

and a path γ : [a, b] → M . Suppose A is a connection on P , u ∈ π−1(γ(a).
Then ∃!γ̃u : [a, b]→ P such that ˙̃γu(t) ∈ (HA)γ(t).

Proof: dπHA : HA
'−→ TM .

Recall that HA is a complement of V TP in TP and is Rg-invariant.
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De�nition 3.1 (parallel transport). We get a map

ParAγ :

{
π−1(γ(a)) → π−1(γ(b))

u 7→ γ̃u(b)

which is called the parallel transport of γ with respect to A.

Proposition 3.2 (properties of parallel transport). ParAγ∗µ =

ParAµ ◦ParAγ and ParAγ ◦Rg = Rg ◦ ParAγ .

Proof. Because HA is Rg-invariant.

Exercise 3.3. If ParAγ only depends on the endpoint of γ, then the bundle
P → M is trivial and A is the trivial connection ( P ' M × G, trivial
connection is H = pr∗1TM .

Proof. Hint: de�ne a global section by parallel transport.

By Proposition 3.2 (properties of parallel transport) ParAγ descends to

ParE,Aγ :

{
Eγ(a) → Eγ(b)

[p, v] 7→ [ParAγ (p), v]

on E = P ×ρ V .

De�nition 3.4 (covariant constancy). Suppose ∇ is a covariant
derivative on E → M be a smooth path. A section s ∈ Γ(E → M) is
said to be covariantly constant along γ if

(∇s) (γ̇(t)) = 0 for all t ∈ [0, 1].

Remark 3.5. This is a di�erential equation for γ∗s on γ∗E → [0, 1].
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This also gives a notion of parallel transport

Par∇γ :

{
Eγ(0) → Eγ(1)

e 7→ s(γ(1))

if s is covariantly constant along γ and e = s(γ(0)).

Proposition 3.6. If ∇A is a covariant derivative on E = P ×ρ V coming
from a connection A on P , then

ParE,Aγ = Par∇Aγ ,

i.e., the two notions coincide.

Proof.

Given in exercises. Review.

Denote by ·̂ : Γ(M ;P×ρV )→ Γρ(P ;V ) and · : Γρ(P ;V )→ Γ(M ;P×ρV )
the isomorphisms. . .

which

(
∇A
γ̇(t)s

)
(γ(t)) =

(
dAs
)
(γ̇(t))

= dAŝ
(

˙̃γ(t)
)

=
[
γ̃(t), dAŝ

(
˙̃γ(t)
)]

=
[
γ̃(t), ds

(
˙̃γ(t)
)]

=

[
γ̃(t),

d

dt
s(γ̃(t))

]
=

[
ParAγ (γ̃(0)),

d

dt
s(γ̃(t))

]
= ParA,Eγt

([
γ̃(0),

d

dt
ŝ(γ̃(t))

])
where γt = γ|[0,t]. This is because
Missed.

If d
dt
ŝ(γ̃(t)) = 0 for any t, then ŝ(γ̃(1)) = ŝ(γ̃(1)).
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Now s(γ(1)) = Par∇
A

γ (s(γ(0))) if ∇A
γ̇(t)s ≡ 0.

On the other hand

[ParAγ (γ̃(0)), ŝ(γ̃(0))] = ParA,Eγ (s(γ(0)))

= [γ̃(0), ŝ(γ̃(0))]

= [γ̃(1), ŝ(γ̃(0))]

= [γ̃(1), ŝ(γ̃(1))] if * holds

= s(γ(1)).

We thus proved that ParA,Eγ (s(γ(0))) = s(γ(1))

What?

3.2 Curvature

De�nition 3.7. Let P
π−→M be a G-principal bundle and A a connection

on P . Then ΩA = dAωA = dωA ◦ prHA is called the curvature of A.

Remark 3.8. Recall: if X is a manifold and H ⊆ TX is a subbundle, then
H is called involutive if [η, ξ] ⊆ H for all vector �elds η, ξ ∈ Γ(X;H).

Theorem 3.9 (Frobenius). Locally there are submanifolds Y ⊆ X such
that TY = H if and only if H is involutive.

Proposition 3.10. ΩA ≡ 0 ⇐⇒ HAis involutive

Proof. Let ξ, η ∈ Γ(P ;HA). Then

ΩA(ξ, η) = dωA(ξ, η)

= ξ.ωA(η)− η.ωA(ξ)− ωA([ξ, η])

= −ωA([ξ, η])

6= 0 i� [ξ, η] has a vertical component.

where we used that ωA(η) = ωA(ξ) = 0 by the de�nition of ωA.
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The last statement in the equation follows since ωA|V TP : V TP → P × g
is an isomorphism.

Proposition 3.11. R∗gΩA = adg−1

Proof.

R∗gdAωA = dωA ◦ prHA ◦ dRg

= dωA ◦ dRg ◦ prHAsince HA is G-invariant

= dR∗gωA ◦ prHA
= d adg−1 ωA ◦ prHAsinceR

∗
gωA = adg−1

= adg−1 ◦ΩAby commutativity of d and ad

So ΩA ∈ Ω2
horiz,ad(P ; g). Under Ω2

horiz,ad(P ; g) ' Ω2(M ; ad(P )) = P×adg)

we denote the image by FA = ΩA.

Proposition 3.12 (Cartan's formula). ΩA = dωA + 1
2
[ωA ∧ ωA], where

the latter is a hybrid notation for [, ]⊗ ∧.

Proof. Check for ΩA(ξ, η).
Say �rst ξ, η are both vertical vector �elds, without loss of generality

ξ = X#
p and η = Y #

p . Then LHS is identically zero since horizontal. RHS is
this.(
dωA +

1

2
[ωA ∧ ωA]

)
(X#, Y #)

= dωA(X#, Y #) +
1

2
[ωA(X#), ωA(Y #)]− 1

2
[ωA(Y #), ωA(X#)]

= X#ωA(Y #)− Y #ωA(X#)− ωA([X#, Y #]) + [ωA(X#), ωA(Y #)]

= −ωA([X, Y ]#) + [X, Y ] since ωA(X#) = X and is constant

= −[X, Y ] + [X, Y ] = 0

Now let one vector �eld be horizontal ṽ, that is, G-invariant horizontal
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lift of v ∈ Γ(TM). Again LHS is zero, and compute the RHS.

dωA(ṽ, X#) = ṽωA(X#)−X#ωA(ṽ)− ωA([ṽ, X#])

= ṽ(X)−X#(0)− ωA([ṽ, X#]) = 0 since

[X#, ṽ]p =
d

dt

∣∣∣∣
t=0

d
(
Re−tX ṽpetX

)
=

d

dt

∣∣∣∣
t=0

d (ṽp) since ṽ is a G-invariant horizontal lift

= 0

[ωA ∧ ωA](ṽ, X#) = 0 since ṽ is horizontal.

Now both are horizontal and Rg-invariant, ṽ, w̃. LHS is:

ΩA(ṽ, w̃) = dωA(ṽ, w̃)

= ṽωA(w̃)− w̃ωA(ṽ)− ωA([ṽ, w̃])

= 0 since ωA(horizontal) = 0.

RHS is

(dωA +
1

2
[ωA ∧ ωA])(ṽ, w̃) = dωA(ṽ, w̃) + 0.

Proposition 3.13. Let α ∈ Ω1(P ;V ). Then dAα = dα+ρ∗(ωA)∧α where
ρ : G→ Aut(V ) and ρ∗ : g→ End(V ) is its derivative.

Proof. Just as with Cartan's formula, check on pairs of vertical and horizon-
tal, horizontal and horizontal, vertical and vertical sections.

Remark 3.14. Also true for α ∈ Ωk
ρ,horiz(P ;V ), where

(ρ∗(ωA) ∧ α) (ξ0, . . . , ξk) =
∑k

i=0(−1)iρ∗(ωA(ξi))α(ξ0, . . . , ξ̂i, . . . , ξk.

Recall that for any two connections A,A′ there exists a 1-form a ∈
Ω1
ρ−eq,horiz(P ; g) such that ωA′ = ωA + a.
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Proposition 3.15. ΩA+a = ΩA + dAa+ 1
2
[a ∧ a]

Proof.

ΩA+a = dωA+a +
1

2
[ωA+a ∧ ωA+a]

= dωA + da+
1

2
[ωA ∧ ωA]

+
1

2
[ωA ∧ a] +

1

2
[a ∧ ωA] +

1

2
[a ∧ a]

= ΩA + da+ [ωA ∧ a] +
1

2
[a ∧ a]

= ΩA + dAa+
1

2
[a ∧ a]

applying the previous proposition to ρ = ad, ρ∗ = [−, ].

Proposition 3.16 (Bianchi's identity). dAΩA = 0

Proof.

dAΩA(ξ, η, λ) = dΩA(ξ, η, λ) + [ωA ∧ ΩA](ξ, η, λ) by a Proposition

=
1

2
d[ωA ∧ ωA](ξ, η, λ) + [ωA ∧ dωA](ξ, η, λ) + [ωA ∧

1

2
[ωA ∧ ωA]](ξ, η, λ)

=
1

2
[dωA ∧ ωA](. . .)− 1

2
[ωA ∧ dωA](. . .) + [ωA ∧ dωA](. . .)

+
1

2
[ωA ∧ [ωA ∧ ωA](. . .)

=
1

2
[ωA ∧ [ωA ∧ ωA]](ξ, η, λ).

Now without loss of generality ξ, η, λ = X#, Y #, Z# for X, Y, Z ∈ g. So
the last term is zero because of the Jacobi identity [X, [Y, Z]] + [Y, [Z,X]] +
[Z, [X, Y ]] = 0.
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Proposition 3.17. For α ∈ Ωk
horiz,ρ(P ;V ) and A a connection on P we

have dAdAα = ρ∗(ΩA) ∧ α.

Proof.

dAdAα = d(dα + ρ∗(ωA) ∧ α)

+ ρ∗(ωA) ∧ (dα + ρ∗(ωA) ∧ α)by a Proposition above

= ρ∗(dωA) ∧ α− ρ∗(ωA) ∧ dα
+ ρ∗(ωA) ∧ dα + ρ∗(ωA) ∧ ρ∗(ωA) ∧ α

Now

(ρ∗(ωA) ∧ ρ∗(ωA)) (ξ, η) = (ρ∗(ωA)(ξ))ρ∗(ωA(η))− ρ∗(ωA(η))ρ∗(ωA(ξ))

= [ρ∗(ωA(ξ)), ρ∗(ωA(η))] Lie bracket in End(V )

= ρ∗([ωA(ξ), ωA(η)]) since ρ∗ is a Lie alg. homom.

= ρ∗

(
1

2
[ωA ∧ ωA]

)
(ξ, η) from Cartan's formula.

The last step is the following. Write ω =
∑
Xiαi where Xi ∈ g and αi ∈

Ω1(P ).

[ωA ∧ ωA](ξ, η) =
∑
i,j

[Xi, Xj]αi ∧ αj(ξ, η)

=
∑
i,j

[Xi, Xj](αi(ξ)αj(η)− αi(η)αj(ξ))

= [ωA(ξ), ωA(η)]− [ωA(η), ωA(ξ)]

= 2[ωA(ξ), ωA(η)]

which �nishes the proof.

De�nition 3.18 (curvature of a covariant derivative).
The curvature of a covariant derivative ∇ : Γ(E)→ Γ(T ∗M⊗E) is de�ned
by

R∇(ξ, η) = ∇ξ∇η −∇η∇ξ −∇[ξ,η]
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Proposition 3.19. If A is a connection on P → M then on P ×ρ V we
get a covariant derivative ∇A induced from A. Then R∇A = ρ∗(FA) where
FA ∈ Ω2(M ; ad(P ) = P ×ad g) and ρ∗ : g→ End(V ).

Proof. Exercise.

Next time we will consider

G x P Q
y

H

M

f

which is de�ned to be a bundle homomorphism for a Lie group homomor-
phism φ : G→ H if f(pg) = f(p)φ(g) for any p, g.

4 Lecture 3: 29 IV 2021

φ : g→ R (or C) polynomial of degree k, alternatively φ : gk → R multilinear
and invariant under permutations (symmetric).

Suppose φ is ad-invariant:

φ(adgX1, . . . , adgXk) = φ(X1, . . . , Xk)

for any g ∈ G and X1, . . . , Xk ∈ g.
Apply this to g = etX and di�erentiate at t = 0. Get

0 =
d

dt

∣∣∣∣
t=0

φ(adetX X1, . . . , adetX Xk) (1)

= φ([X,X1], X2, . . . , Xk) + φ(X1, [X,X2], X3, . . . , Xk) + . . .

Let A be a connection on P →M , de�ne

cφ(A) = φ(ΩA ∧ . . . ∧ ΩA) ∈ Ω2k
horiz(P )

where the curvature ΩA of A is exterior multiplied 2k times.
Two facts from last time: dAΩA = 0 (Bianchi identity) and if α ∈

Ωhoriz,ρ(P ;V ) then
dAα = dα + ρ∗(ωA) ∧ α (2)

(using a hybrid notation at the end, where ρ∗ : g→ End(V )).
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Proposition 4.1. cφ(A) is closed and for any other connection A′ on P the
di�erence cφ(A)− cφ(A′) is exact, hence [cφ(A)] ∈ H2k(P ;R) is independent
of A.

Proof.

dcφ(A) = φ(dΩA ∧ ΩA ∧ . . . ∧ ΩA) + φ(ΩA ∧ dΩA ∧ ΩA ∧ . . .ΩA)

= k · φ(dΩA ∧ ΩA ∧ . . .ΩA)

= k · φ((dΩA + [ωA ∧ ΩA]) ∧ ΩA ∧ . . . ∧ ΩA)

= k · φ(dAΩA ∧ ΩA ∧ . . .)
= 0 by Bianchi identity

Indeed, (1) implies

0 = φ([ωA ∧ ΩA] ∧ ΩA ∧ . . . ∧ ΩA) + φ(ΩA ∧ [ωA ∧ ΩA] ∧ . . . ∧ ΩA) + . . .

Let A′ be another connection, a = A′ − A ∈ Ω1
horiz,ad(P ; g). Then At =

A+ ta is a path of connections from A to A′. Then

ΩAt = ΩA + dA(ta) +
1

2
t2[a ∧ a]

=⇒ d

dt
ΩAt = dAa+ t[a ∧ a]

= dAta

Lemma 4.2. If B ∈ Ω∗horiz(P ;R) is G-invariant, then dAB = dB.

Proof. Use (2) with ρ trivial.
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d

dt
cφ(At) = k · φ

(
dΩAt

dt
∧ ΩAt ∧ . . . ∧ ΩAt

)
= k · φ(dAta ∧ ΩAt ∧ . . . ∧ ΩAt).

= k · dAtφ(a ∧ ΩAt ∧ . . . ∧ ΩAt) by Bianchi

= k · dφ(a ∧ ΩAt ∧ . . . ∧ ΩAt) by Lemma

=⇒ cφ(A′)− cφ(A) = d

(
k

∫ 1

0

φ(a ∧ ΩAt ∧ . . . ∧ ΩAt)

)
.

This �nishes the proof of the proposition.

Example 4.3. If g matrix Lie algebra of a matrix Lie group G, then det(t ·
Id + X) =

∑
k=0 t

kφk(X) and φk is an adG-invariant polynomial of degree
rk(G)− k. ♣
Example 4.4. G = U(1) then g = u(1) = iR. ♣

Remark 4.5. If P = M ×G is the trivial bundle, then it admits the trivial
connection pr∗1TM which has 0 curvature (is integrable).

This implies [cφ] = 0 for any φ in this case.

Lemma 4.6. If ρ : G→ Aut(V ) is trivial, then

Ω∗(M ;P ×ρ V ) ' Ω∗horiz,ρ(P ;V )

given by π∗.

Notice that dπ∗ = π∗. Therefore there exists a unique class čφ(A) ∈
Ω(M ;R) such that π∗čφ(A) = cφ(A). In fact čφ(A) = φ(FA ∧ . . . ∧ FA where
FA ∈ Ω2(M ; ad(P )).

Example 4.7.

S1 S3

S2

Hopf �bration given by C 3 (z, w)→ [z : w] ∈ CP 1. We will apply the above
to cφ(A) = − 1

2πi
ΩA ∈ Ω2(S3;R).

The ad-action is trivial for G = S1.
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Anyway, what is [čφ(A)] ∈ H2
dR(S2;R)? we have the deRham isomor-

phism H2
dR(S2)→ R given by [ω] 7→

∫
S2 ω. Chart for CP 1 is

φ : C→ CP 1

u 7→ [u : 1].

Then φ(C) = CP 1 \ {[1 : 0]}.
Exercises:

ωA = ωdω + zdz

ΩA = dΩA

= dw ∧ dw + dz ∧ dz
= −dw ∧ dw − dz ∧ dz.

Need to �nd FA ∈ Ω2(S2; iR) such that π∗FA = ΩA. We will express FA
through the chart f .

We are looking for a section:

π−1(φ(C)) ⊂ S3

φ(C)

πs

and in fact FA|φ(CC) = s∗ΩA because then π∗FA = π∗s∗ΩA = ΩA because
something.

π−1(φ(C)) ⊂ S3

C φ(C) ⊂ S3

π

φ

s

A candidate is s([u : 1]) = (u,1)√
|u|2+1

. Note it is well-de�ned since s(p) =

(φ−1(p),1)√
|φ−1(p)|2+1

. Now take FA = s∗ΩA and thus φ∗FA = φ∗s∗ΩA = (s ◦ φ)∗ΩA

and s ◦ φ(u) = (u,1)√
|u|2+1

. Get

(s ◦ φ)∗ΩA = −

(
d

(
u√
|u|2 + 1

)
∧ d

(
u√
|u|2 + 1

))
+ 0
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d

(
u√
|u|2 + 1

)
=

du√
|u|2 + 1

− 1

2
u
udu+ udu

(|u|2 + 1)3/2

and similarly for u. At the end

(s ◦ φ)∗ΩA = −du ∧ du
|u|1 + 1

− 1

2

|u|2

(|u|2 + 1)2
du ∧ du− 1

2

|u|2

(|u|2 + 1)2
du ∧ du+ 0

= −
(

du ∧ du
(|u|1 + 1)2

)
and thus ∫

CP 1

(
− 1

2πi
FA

)
=

∫
φ(C)

(
− 1

2πi
FA

)
=

∫
C

(
− 1

2πi
φ∗FA

)
=

∫
C

1

2πi

du ∧ du
(1 + |u|2)2

= −
∫
C

1

π

dx ∧ dy
(1 + |u|2)2

= − 1

π

∫ 2π

0

(∫ ∞
0

rdr

(1 + r2)2

)
dφ

= −2 ·
(

1

2

(
−1

1 + r2

))
|∞0

= −1

Conclusion: −1 = [c(Hopf bundle)] ∈ H2
dR(CP 1). ♣

4.1 Reduction and extension of the structure group

Let λ : H → G be a Lie group homomorphism. Let π : P →M be a principal
G-bundle.
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De�nition 4.8. A λ-reduction of P is a principal H-bundle π′ : Q→M
together with a map f : Q→ P satisfying:

�

Q P

M

f

is commutative,

� f(ph) = f(p)λ(h) for any p ∈ Q, h ∈ H (i.e., of type λ).

Example 4.9. SO(M) ↪→ Gl(M) inclusion of the oriented orthonormal
frame bundle is a SO(n)-reduction of the frame bundle of M (exists if TM
is orientable). ♣

Remark 4.10. P admits a λ-reduction i� there exists cocycles (gik) coming
from cocycles hik : Ui ∩ Uk → H such that gik = λ(hik).

Example 4.11.

λ : S1 → S1

z 7→ z2

Claim: the Hopf bundle S3 → S2 does not admit a λ-reduction.
Exercise. Use Chern classes later on. ♣

Example 4.12. A U(n)-principal bundle P → M admits a reduction to
a SU(n)-principal bundle i� P ×det C is the trivial bundle. ♣

By the way, if we consider the unique connected double cover Spin(n)→
SO(n) then a SO(n)-bundle admits a reduction to a Spin(n)-bundle if w2(P×can
R2) = 0.

5 Exercise session 4 V 2021

We proved a proposition �rst.
Then we proved this:
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Proposition 5.1. If E = P ×ρ V , A a connection on P , then

ΓG(P ;V ) a

a a

ρ∗

Proof.

Missed.

This implies(
R∇

A

x (vx, wx)ϕ
)

(x) = R∇
A

x (vx, wx)[p, ϕ̂]

= [p, (ṽp.(w̃.ϕ̂)− w̃p.(ṽ.ϕ̂)− [̃v, w]p.ϕ̂)(p)] by (*)

= [p,
(

[ṽ, w̃].ϕ̂− [̃v, w]p.ϕ̂
)

(p)]

The commutator [ṽ, w̃] does not need to be horizontal since HA may not be

involutive, but dπ([ṽ, w̃]) = [dπ(ṽ), dπ(w̃)]− [v, w] = dπ([̃v, w]). So we get

= [p, (ΠV ([ṽ, w̃]).ϕ̂)(p)

= −[p, ωA([ṽ, w̃])#
p .ϕ̂] by de�nition of ωA

= −[p,ΩA(ṽ, w̃)#.ϕ̂]

And note that dA
Missed.

ΩA(ṽ, w̃)#.ϕ̂(p) =
d

dt

∣∣∣∣
t=0

ˆ
ϕ
(
petΩA(ṽ,w̃)

)
=

d

dt

∣∣∣∣
t=0

ρ
(
e−tΩA(ṽ,w̃)

)
= −ρ∗(ΩA(ṽ, w̃))ϕ̂(p)
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And we end with

= [p, ρ∗(ΩA(ṽ, w̃))ϕ̂(p)]

and thus

R∇
A

x (vx, wx)[p, ϕ̂(p)] = [p, ρ∗(ΩA(ṽ, w̃))ϕ̂(p)]

Fill in using https://drive.google.com/file/d/1MSc7NIcqWuKAHvGQv4rbwGx6TBQS07No/
view.

6 Lecture 4: 6 V 2021

Example 6.1. Of a reduction. The tangent bundle to CP 2 admits a re-
duction with respect to S1 → S1, z 7→ z2, and thus a spin structure. ♣

De�nition 6.2. In the above situation (previous lecture), P is called
a λ-extension of Q.

Extensions always exist. Indeed, let us take

H Q

M

and λ : H → G. Then taking P = Q×G
/
H where H acts by

(h, (q, g)) 7→ (qh, λ(h)g).

The right G-action on P is induced from

((q, g), g′) 7→ (q, gg′).

Then f : Q→ P of type λ is given by f(q) = [q, e].

28

https://drive.google.com/file/d/1MSc7NIcqWuKAHvGQv4rbwGx6TBQS07No/view
https://drive.google.com/file/d/1MSc7NIcqWuKAHvGQv4rbwGx6TBQS07No/view


6.1 Reductions, extensions and connections

Proposition 6.3. Let

Q P

M

f

πQ
πP

and f be of type λ : H → G. Let A be a connection on Q. Then there is
a unique connection A′ on P such that dfq((HA)q) = (HA′)f(q) ⊆ TP for any
q. Thus satis�es:

f ∗ωA′ = λ∗ ◦ ωA, (3)

f ∗ΩA′ = λ∗ ◦ ΩA. (4)

Here λ∗ : g→ h is the associated Lie algebra homomorphism.

Proof. Let p = f(q)g. De�ne

(HA′)p = dRg

(
dfq

(
(HA)q

))
.

Check that this is independent of q with the property πP (p) = πQ(q) (this
uses the H-invariance of HA and the fact that f is of type λ.

The HA′ then are clearly G-invariant and they form a complement:

πP ◦ f = πQ

=⇒ (dπP )f(q) ◦ dfq|HA
'−→ TMπQ(q)

so dfq

(
(HA)q

)
is a complement to V TPf(q) = ker(dπP )f(q). So HA′ is a con-

nection. Uniqueness follows from the required G-invariance.
Consider X ∈ h.

(f ∗ωA′)(X
#) = ωA′(df(X#)) by de�nition.
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dfq(X
#) =

d

dt

∣∣∣∣
t=0

f(qetX)

=
d

dt

∣∣∣∣
t=0

f(q)λ
(
etX
)

=
d

dt

∣∣∣∣
t=0

f(q)etλ∗X

= (λ∗X)#
f(q)

= ωA ·
(

(λ∗(X))#
)

= λ∗(X)

This proves the �rst formula, (3). The second formula, (4), follows from this
and

ΩA′ = dωA′ +
1

2
[ωA′ ∧ ωA′ ]

=⇒ f ∗ΩA′ = df ∗ωA′ +
1

2
[f ∗ωA′ ∧ f ∗ωA′ ]

= dλ∗ωA +
1

2
[λ∗ωA ∧ λ∗ωA]

= λ∗ΩA because λ∗ is a Lie alg. hom.

De�nition 6.4. A′ is called the λ-extension of A and A the λ-reduction
of A′.

Proposition 6.5. Let

Q P

M

f

πQ
πP

be a morphism of type λ : H → G such that λ∗ is a Lie algebra isomorphism.
Suppose Ais a connection on P . then there exists a unique connection A′

denoted by f ∗A such that f ∗ωA = λ∗ωA′.
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Proof. De�ne
ωA′ = λ−1

∗ ◦ f ∗ωA ∈ Ω∗(Q; h).

For instance, this applies to

Spin(n)
2:1−→ SO(n)

Spinc(n)
2:1−→ SO(n)× S1

both inducing Lie algebra isomorphisms.

De�nition 6.6 (bundle isomorphism). A bundle homomorphism f of
type idG is called a bundle isomorphism. In particular, f : P → P of type
idG is called a bundle automorphism.

De�nition 6.7 (gauge group). Aut(P ) = {f : P → P of type idG} is
called the gauge group of P .

Remark 6.8.

Aut(P ) ' C∞G (P ;G)

=
{
ϕ : P → G

∣∣ϕ(pg) = Adg ϕ(p)(= g−1ϕ(p)g)∀p,g
}

Indeed, given ϕ we set f(p) = pϕ(p) and get f(pg) = pgϕ(pg) =
pgg−1ϕ(p)g = f(p)g.

In other words,

Aut(P ) ' Γ(M ; Ad(P ) = P ×Ad G).

Note Ad(P ) is not a principal G-bundle.

Proposition 6.9. Let f ∈ Aut(P ) and ϕf : P → G be the associated map.
Then f ∗A (de�ned by ωf∗A = f ∗ωA) satis�es:

1. ωf∗A = Adϕ−1 ωA+ϕ−1dϕ (the last one is left multiplication in the Lie
group),

2. df∗A = f ∗ ◦ dA ◦ (f ∗)−1, Ωf∗A = Adϕ−1
f
◦ΩA.
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Proof. Exercise. (Baum, Thm 3.22)

6.2 Chern-Weil theory again

G P

M

principal bundle. Consider φ : gk → C which is Ad-invariant and symmetric.
Get

cφ(A) = φ(Ω∧kA ) ∈ Ω2k
horiz,G−invt(P ;C).

We have seen dcφ(A) = 0 and cφ(A′) = cφ(A) ∈ dΩ∗horiz,G−invt(P ;R).

Lemma 6.10. Ω∗horiz,G−invt(P ;C) ' Ω∗(M ;C) where the inverse map is
given by π∗.

Thus there is cφ(A) such that π∗cφ(A) = cφ(A), and we de�ne

cφ(P ) = [cφ(A)] ∈ H2k(M ;C).

De�nition 6.11 (Weil homomorphism). We get the Weil
homomorphism

WP : S∗G(g) −→ H∗dR(M ;C)

φ 7−→ cφ(P )

de�ned on the algebra of symmetric multilinear forms.

De�nition 6.12. Given f : N → M , we call f ∗P = {(n, p) ∈ N × P |
f(n) = π(p)} the pull-back bundle, and get

f ∗P P

N M

f̂(n,p)=p

π

f

.
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Proposition 6.13. If A is a connection on P , then there is a unique con-
nection A′ on f ∗P such that ωA′ = f̂ ∗ωA.

Proof. De�ne it by this formula, ωA′ = f̂ ∗ωA. Check:

ωA′(X
#) = ωA((f̂∗X

#)

= ωA(X#) = X.

Theorem 6.14 (functoriality of the Weil homomorphism). For the
Weil homomorphism we have

1. cφ(f ∗P ) = f ∗cφ(P ) (or, Wf∗P = f ∗WP ),

2. if

Q P

M

f

and ω of type λ, φ ∈ S∗G(g) and φλ = φ ◦ λ∗ ∈ S∗G(h), then cφλ(Q) =
cφ(P ) (i.e., WP (φ) ◦ λ∗ = WQ(φλ)).

Proof. (1) follows from the previous proposition:

cφ(f ∗P ) =
[
cφ

(
f̂ ∗A

)]
= [f ∗cφ(A)]

= f ∗cφ(P )

(2) as well, use the above proposition with the push-forward connection
and notice f induces id on M .

Remark 6.15. It can be shown that any principal G-bundle admits a re-
duction to a maximal compact subgroup (e.g., U(n) ⊆ GL(n,C)).
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6.3 Chern classes of vector bundles

U(n) = {B ∈ GL(n,C)|B∗B = id}
u(n) = {X ∈ gl(n,C)|X∗ = −X}

De�nition 6.16. φk : gl(n,C)→ C is given by

det

(
t− 1

2πi
X)

)
=

n∑
k=0

φk(X)tn−k.

Then φk are Ad-invariant and φk|u(n) take real values. (proof: det
(
t− 1

2πi
X
)

=

det
(
t+ 1

2πi
X
t
)

= det
(
t− 1

2πi
X
)
).

Any X ∈ u(n) is diagonalizable, X =

(
λ1

. . . λn

)
. Thus

det

(
t− 1

2πi
X

)
=

n∏
i=1

(
t− λi

2πi

)
which implies that

φ1(X) = − 1

2πi
tr(X)

and

φ2(X) =
∑
i<j

λiλj

(
− 1

4π2

)

= − 1

8π2

(∑
i,j

λiλj −
∑
i

λ2
i

)

=
1

8π2
(tr(X2)− tr(X) tr(X))

and so on, to

φn(X) =

(
− 1

2πi

)n
det(X).

Theorem 6.17. The elements φ0, . . . , φn ∈ Sym∗U(n)(u(n)) are alge-
braically independent and generate Sym∗U(n)(u(n)).
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Proof. φk(X) =
(
− 1

2πi

)
σk(λ1, . . . , λn), where σk is the k-th elementary sym-

metric polynomial. These symmetric polynomials have the required prop-
erty.

Theorem 6.18. Let E = P×ρcanCn, where P is a principal U(n)-bundle.
Then

ck(E) = [φk(FA ∧ . . . ∧ FA))] ∈ H2k
dR(M ;R)

is the image of the Chern class under

H2k(X;Z)→ H2k(X;R) ' H2k
dR(X).

The element

c(E) =

[
det

(
1− 1

2πi
FA

)]
= c0(E) + c1(E) + . . . cn(E)

is called the total Chern class.

Proof. Sketch. Chern classes are characterized by the axioms:

� c1(E1) = c1(E2) if E1 ' E2,

� c(f ∗E) = f ∗c(E) for any f : N →M ,

� c(E1 ⊕ E2) = c(E1) · c(E2), (cup product)

� ck(E
∗) = (−1)kck(E), c(Cn) = 1,

� 〈c1(H), [CP 1]〉 = −1 where H → CP 1 is the tautological line bundle.

The �rst two follow from the functoriality of the Weil homomorphism,
Theorem 6.14.

When E1 ⊕ E2 has a reduction to a GL(n1,C)×GL(n2,C)-bundle, take
a connection respecting this reduction and apply Theorem 6.14.
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E∗ is associated to the dual representation U(n) → (Cn)∗, (ρcan)∗ :
u(n)→ gl(n,C) mapping X 7→ X∗ = −X.

We have veri�ed c1(H) = −1 last time.

Example 6.19. c1(E) = − 1
2πi

[tr(FA)]
c2(E) = 1

8π2 [tr(FA ∧ FA)− tr(FA) ∧ tr(FA)] ♣

Remark 6.20. If we have a reduction to SU(n), then c1(E) = 0.

Proof. φ1|su(n) = − 1
2πi

tr |su(n) = 0 since elements in su(n) are traceless.

6.4 Pontryagin classes

De�nition 6.21 (Pontryagin classes). If E → M is a real vector
bundle, then pk(E) = (−1)kc2k(E

C) is a Pontryagin class.
The total Pontryagin class is p(E) = 1 + p1(E) + . . . ∈ H4∗

dR(M ;R).

Theorem 6.22. These can be obtained by the above approach from
det
(
t− 1

2π
X
)

=
∑n

k=0 ψk(X)tn−k on gl(n) and ψ2k+1|o(n) = 0 for any
k, where o(n) is the Lie algebra of O(n) = {A|AAt = id}, so o(n) =
{X|X t = −X}.

For instance tr(X) = tr(X t) = tr(−X) = − tr(X) which implies
tr(X) = 0.

Random notes

Remind Raphael about recording if needed.
Raphael's lecture notes are available at

https://drive.google.com/file/d/10F8GW2ad0rY9Y0QlUyJbJ1s_GGP9Nasb/

view?usp=sharing.
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