Raphael Zentner's instanton class – notes

Piotr Suwara

May 19, 2021

If <u>you</u> want to contribute to these notes in any way (e.g., you have spotted a typo), email psuwara at impan dot pl.

Contents

1	1 Lecture 1: 15 IV 2021											2
	1.1 Motivation											2
	1.2 Fibre bundles \dots											
	1.3 Associated bundles											5
	1.4 Connections in principa	al bundles				•						6
2	Recitation 1: 20 IV 2021								9			
	2.1 Line bundles over the p	rojective s	pace					٠	•			9
	2.2 Lie bracket exercise							٠				10
	2.3 Additions to the lecture											
3	Lecture 2: 22 IV 2021							13				
	3.1 Parallel transport											13
	3.2 Curvature											
4	Lecture 3: 29 IV 2021									21		
	4.1 Reduction and extension of the structure group							25				
5	Exercise session 4 V 2021					26						

6	Lec	Lecture 4: 6 V 2021							
	6.1	Reductions, extensions and connections	29						
	6.2	Chern-Weil theory again	32						
	6.3	Chern classes of vector bundles	3^{2}						
	6.4	Pontryagin classes	36						

Figure 1: This is a test drawing. I am sure Inkscape will prove useful later on, but for now just consider it a weird piece of art.

1 Lecture 1: 15 IV 2021

1.1 Motivation

Theorem 1.1 (Donaldson's Theorem A). If X^4 is a smooth oriented 4-manifold such that the intersection form

$$Q_X: H^2(X; \mathbb{Z}) \to H^2(X; \mathbb{Z}) \to \mathbb{Z}$$

$$Q_X(a, b) = \langle a \cup b, [X] \rangle$$

is negative definite. Then Q_X is equivalent over $\mathbb Z$ to the diagonal pairing

$$\mathbb{Z}^{b_2(X)} \times \mathbb{Z}^{b_2(X)} \to \mathbb{Z}$$
$$(a, b) \mapsto a^t(-\mathrm{Id})b$$

In contrast:

Theorem 1.2 (Freedman). For any symmetric bilinear unimodular form Q over \mathbb{Z} there exists a topological simply-connected 4-manifold X for which $Q_X \simeq Q$.

Since there are many negative definite unimodular quadratic forms, we obtain the following:

Corollary 1.3. There are many topological 4-manifolds which do not admit a smooth structure.

Other results:

Theorem 1.4 (Furuta). Brieskorn homology 3-spheres generate a subgroup $\mathbb{Z}^{\infty} \subseteq \Theta^3_{\mathbb{Z}}$ of the homology cobordism group.

Theorem 1.5 (Donaldson). The h-cobordism theorem doesn't hold in dimension 4.

Theorem 1.6 (Taubes). There exist infinitely many distinct smooth structures on \mathbb{R}^4 .

Note the latter is false for all \mathbb{R}^n for $n \neq 4$!

Theorem 1.7 (Kronheimer-Mrowka, Property P). If $K \subseteq S^3$ is a knot and $K \neq U$, U is the unknot, then there exists an irreducible representation $\pi_1\left(S_{\frac{p}{q}}^3\right) \to SU(2)$ if $\left|\frac{p}{q}\right| \leq 2$.

Theorem 1.8 (Zentner). If $Y \neq S^3$ is a closed 3-manifold then there exist non-trivial representations $\pi_1(Y) \to \mathrm{SL}(2,\mathbb{C})$.

1.2 Fibre bundles

We'll talk about principal fibre bundles, associated vector bundles and connections.

Sources include: Helga Baum: Eichfeld-theorie, Kobayashi-Monizu: Foundations of Differential Geometry.

Definition 1.9 (principal fibre bundle). Let G be a Lie group. A smooth map $\pi: P \to M$ is called a principal fibre bundle if

- G acts freely on P from the right and is transitive on the fibres,
- π is locally trivial, i.e., for each $x \in M$ there is an open neighborhood $U \ni x$ and a diffeomorphism $\varphi : \pi^{-1}(U) \to U \times G$ such that (here the diagram comes, oh my) commutes and φ is G-equivariant: $\varphi(p) = (\pi(p), h)$ implies $\varphi(pg) = (\pi(p), hg)$.

Exercise 1.10. π admits a global trivialisation if and only if $\pi: P \to M$ admits a section $s: M \to P$ (i.e. $\pi \circ s = \mathrm{id}_M$).

Example 1.11 (Hopf bundles). $S^{2n+1} \subseteq \mathbb{C}^{k+1}$ with S^1 -action by multiplication ($S^1 \subset \mathbb{C}$). Then $\pi: S^{2n+1} \to \mathbb{C}P^n = S^{2n+1}/S^1 = (\mathbb{C}^{k+1} \setminus \{0\})/\mathbb{C}^*$ is a principal S^1 -bundle.

Example 1.12 (quaternionic Hopf bundles). $S^{4n+3} \subseteq \mathbb{H}^{n+1}$, $S^3 \subset \mathbb{H}$ unit spheres. S^3 acts on S^{4n+3} in two different ways, from the right $((q_0,\ldots,q_n),q)\mapsto (q_0q,\ldots,q_nq)$ or from the left $((q_0,\ldots,q_n),q)\mapsto (\bar{q}q_0,\ldots,\bar{q}q_n)$ (note that for $q\in S^3$ we have $q^{-1}=\bar{q}$).

Then $\pi: S^{4n+3} \to \mathbb{H}P^n$ is a principal S^3 -bundle. In particular one gets $S^7\pi\mathbb{H}P^1 \simeq S^4$.

Example 1.13 (frame bundles). If $\pi : E \to M$ is a (complex, real, hermitian, euclidean, etc.) vector bundle of rank r, then

$$P_E = \{(e_1, \dots, e_r) \in E^r | (e_1, \dots, e_r) \text{ is a}$$

(complex, real, unitary, orthogonal, etc.) basis of $E_m = \pi^{-1}(m) \}$

has a G-action (GL (r, \mathbb{C}) , GL (r, \mathbb{R}) , U(r), O(r), etc.). This forms $\pi: P_E \to M$, a principal G-bundle. The action is given by $(e_1, \ldots, e_r)g = (\sum_{i=1}^r g'_{1i}e_i, \ldots, \sum_{i=1}^r g'_{ri}e_i)$ where $g^{-1} = (g'_{ij})_{i,j=1,\ldots,r}$.

Example 1.14 (homogeneous spaces). $H \subseteq G$ closed Lie subgroup, G/H is a homogeneous space and $G \to G/H$ is a principal H-bundle.

1.3 Associated bundles

Definition 1.15 (associated bundle). Let $\pi: P \to M$ be a principal G-bundle. Suppose V is a vector space and $\rho: G \to \operatorname{Aut}(V)$ is a group homomorphism. Then $P \times V$ has a right G-action via $(p, v)g = (pg, \rho(g^{-1})v)$ and $\pi: E = P \times_{\rho} G = (P \times V)/G \to M$ is the associated bundle to P and ρ .

Exercise 1.16. $\pi: E \to M$ given by $[p, v] \mapsto \pi(p)$ is a vector bundle.

A tautology:

E a G-vector bundle of rank r, G(E) G-frame bundle, then $G(E) \times_G \mathbb{K}^r \to E$ given by $[(e_1, \ldots, e_r), (z_1, \ldots, z_r)] \mapsto \sum z_i e_i$ is an <u>isomorphism</u> of vector bundles.

Further examples:

$$TM = \operatorname{GL}(M) \times_{\rho_{can}} \mathbb{R}^{n}$$

$$T^{*}M = \operatorname{GL}(M) \times_{\rho_{can}^{*}} (\mathbb{R}^{n})^{*}$$

$$\Lambda^{k}M = \operatorname{GL}(M) \times_{\rho_{can} \wedge \dots \wedge \rho_{can}} \Lambda^{k}(\mathbb{R}^{n})^{*}$$

Example 1.17 (tautological line bundle over $\mathbb{C}P^n$).

$$H = \{(l, \xi) \in \mathbb{C}P^n \times \mathbb{C}^{n+1} | \xi \in l \}$$

Then

$$H \to L$$
$$(l, \xi) \mapsto l$$

is a complex line bundle.

On the other hand, consider $\pi: S^{2n+1} \to \mathbb{C}P^n$, $\rho_k: S^1 \to \operatorname{Aut}(\mathbb{C})$

$$z \mapsto (\xi \mapsto z^k \xi).$$

Exercise 1.18.

$$H \simeq S^{2k+1} \times_{\rho_1} \mathbb{C}$$

$$H^* \simeq S^{2k+1} \times_{\rho_{-1}} \mathbb{C}$$

$$H^{\otimes l} \simeq S^{2k+1} \times_{\rho_k} \mathbb{C}$$

Denote the Lie algebra of G by \mathfrak{g} . Then

$$Ad: G \to Aut(G)$$
$$g \mapsto (h \mapsto ghg^{-1})$$

induces

$$ad: G \to Aut(\mathfrak{g})$$
$$g \mapsto (d \operatorname{Ad}_q)_e : \mathfrak{g} \to \mathfrak{g}$$

i.e., take the differential of Ad_g at $e\in G.$ Also define

$$ad(P) = P \times_{ad} \mathfrak{g}.$$

By the way,

$$(d \operatorname{ad})_e : \mathfrak{g} \to \operatorname{End}(\mathfrak{g}),$$

 $X \mapsto (Y \mapsto [X, Y]).$

1.4 Connections in principal bundles

Let $\pi:P\to M$ a principal G-bundle. Define

$$VTP = \ker(d\pi : TP \to TM).$$

From the free G-action we get a linear map

$$\mathfrak{g} \to \Gamma(TP)$$
$$\xi \mapsto \xi^{\#}$$

where $\xi_p^\# = \frac{d}{dt}|_{t=0} (\rho e^{t\xi})$ using the $e^v = \exp(v)$ the exponential map of G. Observe that $\xi^\# \in \Gamma(VTP)$.

Exercise 1.19. Denote by R_g the right g-action. Then the diagram commutes:

$$VTP_{p} \leftarrow_{\#} \mathfrak{g}$$

$$\downarrow^{dR_{g}} \qquad \downarrow^{\operatorname{ad}_{g^{-1}}}$$

$$VTP_{pg} \leftarrow_{\#} \mathfrak{g}$$

Exercise 1.20. $[\xi, \eta]^{\#} = [\xi^{\#}, \eta^{\#}]$

Lemma 1.21. We get a trivialization $\#: P \times \mathfrak{g} \to VTP$.

Definition 1.22 (connection). A connection on P is a dim M-dimensional subbundle $H \subset TP$ which is complementary to VTP, i.e., $H \cap VTP = 0$ and TP = VTP + H (shortly $TP = VTP \oplus H$) and equivariant with respect to the G-action, i.e., $dR_q(H) = H$ for any $g \in G$.

Remark 1.23. $d\pi|_H: H \to TM$ is an isomorphism.

Definition 1.24 (connection 1-form). If H is a connection on $\pi: P \to M$, then we define the associated connection 1-form $\omega_H \in \Omega^1(P; \mathfrak{g})$ by the composition

$$TP_p \xrightarrow{\operatorname{pr}_{||H}} VTP_p \xrightarrow{(\#)^{-1}} \mathfrak{g}$$

Remark 1.25. $\omega_H(X^\#) = X$

Remark 1.26. $R_g^*\omega_H = \operatorname{ad}_{g^{-1}}\omega_H$ by Exercise 1.19 and since H is R_g -invariant.

Remark 1.27. $H = \ker(\omega_H : TP \to \mathfrak{g})$

Lemma 1.28. Suppose on the other hand that $\omega \in \Omega^1(P; \mathfrak{g})$ satisfies $\omega(X^{\#}) = X$ for any $X \in \mathfrak{g}$ and $R_g^*\omega = \operatorname{ad}_{g^{-1}}\omega$ for any $g \in G$. Then $H_{\omega} = \ker(\omega : TP \to \mathfrak{g})$ is a connection.

Remark 1.29. The two constructions are inverses to each other: $\ker \omega_H = H$ and $\omega_{H_\omega} = \omega$.

Definition 1.30 (notation for connections). We write A for a connection and H_A or ω_A to make explicit its manifestation.

Definition 1.31 (horizontal forms of type ρ). Let $\alpha \in \Omega^k(P; V)$ and $\rho: G \to \operatorname{Aut}(V)$. The α is called

- horizontal $\alpha(\xi_1, \dots, \xi_k) = 0$ whenever any ξ_i is vertical,
- of type ρ if $R_a^*\alpha = \rho(g)^{-1} \circ \alpha$.

Denote horizontal forms of type ρ by

$$\Omega^k_{horiz,\rho}(P;V)$$
.

Proposition 1.32.

$$\Omega^k_{\rho,horiz}(P;V) \xrightarrow{-} \Omega^k(M;P \times_{\rho} V)$$
$$\omega \mapsto \bar{\omega}$$

is an isomorphism, where

$$\Omega^k(M; P \times_{\rho} V) = \Gamma(M; \Lambda^k T^* M \otimes P \times_{\rho} V)$$

and

$$\bar{\omega}_x(v_1,\ldots,v_k)=[p,\omega(\xi_1,\ldots,\xi_k)]$$

where $\pi(p) = x$ and $d\pi_p(\xi_i) = v_i$ for any i.

Remark 1.33. The bracket above does not denote the Lie bracket but the equivalence class of an element in $P \times_{\rho} V$.

Proof. Independence of lifts: if $d\pi_p(\xi_i) = d\pi_p(\xi_i')$ then $\xi_i - \xi_i' \in VTP$, so by horizontality of ω we get $\omega(\ldots, \xi_i, \ldots) = \omega(\ldots, \xi_i', \ldots)$.

Independence of $p \in \pi^{-1}(x)$ follows since ω is of type ρ .

Suppose ω_A and $\omega_{A'}$ are two 1-forms. Then

$$\omega_A - \omega_{A'} \in \Omega^1_{\mathrm{ad},horiz}(P;\mathfrak{g})$$

and therefore there exists $a \in \Omega^1_{\mathrm{ad},horiz}(P;\mathfrak{g})$ such that $\omega_{A'} = \omega_A + a$. We conclude that

Lemma 1.34. The space of connections on $P \to M$ is an affine space over $\Omega^1_{\mathrm{ad},horiz}(P;\mathfrak{g}) \simeq \Omega^1(M;\mathrm{ad}(P)).$

2 Recitation 1: 20 IV 2021

2.1 Line bundles over the projective space

 $S^1 \hookrightarrow S^{2n+1} \to \mathbb{C}P^n$ is an S^1 -bundle with action

$$((z_0,\ldots,z_n),w)\mapsto (z_0w,\ldots,z_nw)$$

Let

$$\rho_k: \begin{cases} S^1 & \to \operatorname{Aut}(\mathbb{C}) \\ z & \mapsto \operatorname{mult}_{z^k} \end{cases}$$

for $k \in \mathbb{Z}$. Get the associated bundle $P \times_{\rho_k} \mathbb{C} \to \mathbb{C} P^n$, a complex line bundle. On the other hand we have H as defined in 1.17. The claim is that $S^{2k+1} \times_{\rho_k} \mathbb{C} \simeq H^{\otimes k}$, where H^{-1} is defined as $H^* = \mathrm{Hom}_{\mathbb{C}}(H, \mathbb{C})$.

Starting with ρ_1 , we define

$$P \times \mathbb{C} \xrightarrow{f_1} H$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow$$

$$P \times_{\rho_1} \mathbb{C} \longrightarrow \mathbb{C} P^n$$

via

$$((z_0,\ldots,z_r),w)\xrightarrow{f_1}([z_0,\ldots,z_r],(z_0,\ldots,z_r)\cdot w).$$

We directly check it descends to a bundle homomorphism. Since it is an isomorphism on fibers, it is a bundle isomorphism because of the general fact:

Proposition 2.1.

$$\operatorname{GL}(n) \to \operatorname{GL}(n)$$

 $(\operatorname{Aut}(V) \to \operatorname{Aut}(V))$
 $B \mapsto B^{-1}$

is a smooth map (polynomial for $U(n), O(n), \ldots$).

Similarly, for k > 0 define

$$P \times \mathbb{C} \xrightarrow{f_k} H^{\otimes k},$$

$$((z_0, \dots, z_r), w) \mapsto w \cdot (\underline{z} \otimes \dots \underline{z}).$$

The action of G via $R_g \times \rho_k$ gives $(\underline{z}, w) \simeq (\underline{z} \cdot u, u^{-1}w)$ and f_k descends to the quotient since $(\underline{z}u)^{\otimes k} = u^k\underline{z}$.

We turn to the case k < 0. Start with k = -1.

$$P \times \mathbb{C} \xrightarrow{f_{-1}} H^*$$
$$(\underline{z}, w) \mapsto w \cdot \langle \underline{z}, - \rangle_{\mathbb{C}}$$

This works because for $u \in S^1$, $\overline{u} \cdot u = 1$.

2.2 Lie bracket exercise

We wanna prove $[X,Y]^{\#}=[X^{\#},Y^{\#}]$ as well as commutativity of the diagram:

$$TP_{p} \xleftarrow{\#} \mathfrak{g}$$

$$\downarrow^{dR_{g}} \qquad \downarrow^{\mathrm{ad}_{g^{-1}}}.$$

$$TP_{pg} \xleftarrow{\#} \mathfrak{g}$$

The commutativity of the diagram is proven this way:

$$(\operatorname{ad}_{g^{-1}}(X))_{pg}^{\#} = \frac{d}{dt} \Big|_{t=0} pge^{t \operatorname{ad}_{g^{-1}}(X)}$$

$$= \frac{d}{dt} \Big|_{t=0} pgg^{-1}e^{sX}g$$

$$= \frac{d}{ds} \Big|_{s=0} pe^{sX}g$$

$$= \frac{d}{ds} \Big|_{s=0} R_g(pe^{sX})$$

$$= dR_g(X_p^{\#})$$

Now recall that on one hand, in the Lie algebra, we have

$$[X,Y] = \frac{d}{ds} \bigg|_{s=0} \operatorname{ad}_{e^{sX}}(Y)$$

and on a manifold, if ϕ_{ξ}^{t} denotes the flow of ξ , then

$$[\xi, \eta](p) = \left. \frac{d}{dt} \right|_{t=0} d\phi_{\xi}^{-t} \left(\eta_{\phi_{\xi}^{t}(p)} \right).$$

We have $G \hookrightarrow P \to M$. Firstly we claim $\phi_{X^{\#}}^t = R_{e^{tX}}$:

$$R_{e^{tX}}(p) = \frac{d}{ds} \Big|_{s=0} R_{e^{(t+s)X}}(p)$$
$$= X_{pe^{tX}}^{\#} = X_{R_{e^{tX}}(p)}^{\#}$$

because $R_{e^{(t+s)X}} = R_{e^{sX}} \circ R_{e^{tX}}$.

$$[X^{\#}, Y^{\#}](p) = \frac{d}{dt} \Big|_{t=0} dR_{e^{-tX}} \left(Y_{e^{tX}(p)}^{\#} \right)$$

$$= \frac{d}{dt} \Big|_{t=0} dR_{e^{-tX}} \frac{d}{ds} \Big|_{s=0} \left(pe^{tX} \right) e^{sY}$$

$$= \frac{d}{dt} \Big|_{t=0} \frac{d}{ds} \Big|_{s=0} R_{e^{tX}e^{sY}e^{-tX}}(p)$$

$$= \frac{d}{dt} \Big|_{t=0} R_{\text{ad}_{e^{tX}}(Y)}(p)$$

$$= [X, Y]^{\#}(p)$$

2.3 Additions to the lecture

Recall that we have $d: \Omega^*N \to \Omega^{*+1}N$ defined by

$$d\omega(\xi_0, \dots, \xi_k) = \sum_{i=0}^k (-1)^i \tilde{\xi}_i \omega(\tilde{\xi}_0, \dots, \hat{\tilde{\xi}}_i, \dots, \tilde{\xi}_k)$$
$$+ \sum_{i < j} (-1)^{i+j} \omega([\tilde{\xi}_i, \tilde{\xi}_j], \tilde{\xi}_0, \dots, \hat{\tilde{\xi}}_i, \dots, \hat{\tilde{\xi}}_j, \dots, \tilde{\xi}_k)$$

where $\tilde{\xi}_i$ is a vector field with $\tilde{\xi}_i(x) = \xi_i$ (the formula is independent of the choice of $\tilde{\xi}_i$). In particular, for a 1-form we have

$$d\omega(\xi,\eta) = \xi\omega(\eta) - \eta\omega(\xi) - \omega([\xi,\eta]).$$

Notice that d does not in general preserve $\Omega^*_{\rho,horiz}(P,V)$.

Example 2.2. Consider $P = \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ given by $(t, s) \mapsto t$. Then $\omega = f(s)dt$ is horizontal, but $d\omega = \frac{\partial f}{\partial s}ds \wedge dt$ is not horizontal unless $\frac{\partial f}{\partial s} \equiv 0$.

If we have a connection A on the principal G-bundle $P \to M$ with horizontal subbundle H_A , then define for $\alpha \in \Omega(P, V)$ the differential

$$d_A \alpha = d\alpha \circ \operatorname{pr}_{H_A}$$

i.e.,
$$(d_A\alpha)(\xi_1,\ldots,\xi_k) = d\alpha \left(\operatorname{pr}_{H_A}\xi_1,\ldots,\operatorname{pr}_{H_A}\xi_k\right)$$
.

Remark 2.3. $d_A\alpha$ is necessarily horizontal, whether or not α has been.

Remark 2.4. If α is of type $\rho: G \to \operatorname{Aut}(V)$, then $d_A \alpha$ is also of this type (because H_A is R_g -invariant).

In particular, get

$$d_A: \Omega^k_{horiz,\rho}(P,V) \to \Omega^{k+1}_{horiz,\rho}(P,V).$$

Definition 2.5. d_A is called the <u>covariant derivative</u> of the connection A on P.

Remark 2.6. $d^2 = 0$, but $d_A \circ d_A \neq 0$ in general.

Definition 2.7. d_A descends to

$$\Omega^k_{\rho,horiz}(P;V) \xrightarrow{d_A} \Omega^{k+1}_{\rho,horiz}(P;V)$$

$$\downarrow^{-,\simeq} \qquad \qquad \downarrow^{-,\simeq}$$

$$\Omega^k(M;P\times_\rho V) \xrightarrow{-\overline{d}_A} \Omega^{k+1}(M;P\times_\rho V)$$

which we denote by \overline{d}_A .

Definition 2.8. Let $E \to M$ be a vector bundle. A map

$$nablaa: \Gamma(E \to M) \to \Omega^1(E \to M) = \Gamma(T^*M \otimes E)$$

satisfying the Leibniz rule

$$\nabla(fs) = df \otimes s + f \cdot \nabla a$$

for any $f \in \mathcal{C}^{\infty}(M)$ and $s \in \Gamma(E)$ is called a covariant derivative.

Proposition 2.9. Let $P \to M$ be a G-principal bundle and $\rho: G \to \operatorname{Aut}(V)$, then

$$\overline{d}_A: \Gamma(M; P \times_{\rho} V) \to \Omega^1(M; P \times_{\rho} V)$$

is a covariant derivative on the vector bundle $P \times_{\rho} V$.

Proof. Unravel the definitions.

Definition 2.10. Let $\gamma:[0,1]\to M$ be a smooth path. We say $s\in\Gamma(E)$ is <u>parallel</u> with respect to ∇ if $(\nabla s)(\dot{\gamma}(t))=0$ for any t. Then $s(\gamma(1))$ is the result of <u>parallel transport</u> of s along γ .

Note that for geodesics we have $\nabla_{\dot{\gamma}(t)}\dot{\gamma}(t) \equiv 0$. On the other hand, having

$$G \hookrightarrow P$$

$$\downarrow$$

$$M$$

we would like to take a path in M and lift it to a horizontal path in P, to get parallel transport. We'll do that soon.

3 Lecture 2: 22 IV 2021

Recall we have $d_A = d \circ \operatorname{pr}_A$, that is $d_A \alpha = d \alpha \circ \operatorname{pr}_A$.

3.1 Parallel transport

Consider a bundle

$$G \longleftrightarrow P \\ \downarrow^{\pi} \\ M$$

and a path $\gamma:[a,b]\to M$. Suppose A is a connection on $P,\,u\in\pi^{-1}(\gamma(a).$ Then $\exists!\widetilde{\gamma}_u:[a,b]\to P$ such that $\dot{\widetilde{\gamma}}_u(t)\in(H_A)_{\gamma(t)}.$

Proof: $d\pi_{H_A}: H_A \xrightarrow{\simeq} TM$.

Recall that H_A is a complement of VTP in TP and is R_g -invariant.

Definition 3.1 (parallel transport). We get a map

$$\operatorname{Par}_{\gamma}^{A}: \begin{cases} \pi^{-1}(\gamma(a)) & \to \pi^{-1}(\gamma(b)) \\ u & \mapsto \widetilde{\gamma}_{u}(b) \end{cases}$$

which is called the parallel transport of γ with respect to A.

Proposition 3.2 (properties of parallel transport). $\operatorname{Par}_{\gamma*\mu}^A = \operatorname{Par}_{\mu}^A \circ \operatorname{Par}_{\gamma}^A \ and \operatorname{Par}_{\gamma}^A \circ R_g = R_g \circ \operatorname{Par}_{\gamma}^A$.

Proof. Because H_A is R_g -invariant.

Exercise 3.3. If $\operatorname{Par}_{\gamma}^{A}$ only depends on the endpoint of γ , then the bundle $P \to M$ is trivial and A is the trivial connection ($P \simeq M \times G$, trivial connection is $H = \operatorname{pr}_{1}^{*}TM$.

Proof. Hint: define a global section by parallel transport.

By Proposition 3.2 (properties of parallel transport) $\operatorname{Par}_{\gamma}^{A}$ descends to

$$\operatorname{Par}_{\gamma}^{E,A}: \begin{cases} E_{\gamma(a)} & \to E_{\gamma(b)} \\ [p,v] & \mapsto [\operatorname{Par}_{\gamma}^{A}(p),v] \end{cases}$$

on $E = P \times_{\rho} V$.

Definition 3.4 (covariant constancy). Suppose ∇ is a covariant derivative on $E \to M$ be a smooth path. A section $s \in \Gamma(E \to M)$ is said to be covariantly constant along γ if

$$(\nabla s) (\dot{\gamma}(t)) = 0$$
 for all $t \in [0, 1]$.

Remark 3.5. This is a differential equation for γ^*s on $\gamma^*E \to [0,1]$.

This also gives a notion of parallel transport

$$\operatorname{Par}_{\gamma}^{\nabla}: \begin{cases} E_{\gamma(0)} & \to E_{\gamma(1)} \\ e & \mapsto s(\gamma(1)) \end{cases}$$

if s is covariantly constant along γ and $e = s(\gamma(0))$.

Proposition 3.6. If ∇_A is a covariant derivative on $E = P \times_{\rho} V$ coming from a connection A on P, then

$$\operatorname{Par}_{\gamma}^{E,A} = \operatorname{Par}_{\gamma}^{\nabla_A}$$

i.e., the two notions coincide.

Proof.

Given in exercises. Review

Denote by $\hat{\cdot}: \Gamma(M; P \times_{\rho} V) \to \Gamma_{\rho}(P; V)$ and $\bar{\cdot}: \Gamma_{\rho}(P; V) \to \Gamma(M; P \times_{\rho} V)$ the isomorphisms...

which

$$(\nabla_{\dot{\gamma}(t)}^{A}s)(\gamma(t)) = (\overline{d}_{A}s)(\dot{\gamma}(t))$$

$$= d_{A}\hat{s}(\dot{\tilde{\gamma}}(t))$$

$$= [\tilde{\gamma}(t), d_{A}\hat{s}(\dot{\tilde{\gamma}}(t))]$$

$$= [\tilde{\gamma}(t), ds(\dot{\tilde{\gamma}}(t))]$$

$$= [\tilde{\gamma}(t), \frac{d}{dt}s(\tilde{\gamma}(t))]$$

$$= [\operatorname{Par}_{\gamma}^{A}(\tilde{\gamma}(0)), \frac{d}{dt}s(\tilde{\gamma}(t))]$$

$$= \operatorname{Par}_{\gamma_{t}}^{A,E}\left(\left[\tilde{\gamma}(0), \frac{d}{dt}\hat{s}(\tilde{\gamma}(t))\right]\right)$$

where $\gamma_t = \gamma|_{[0,t]}$. This is because

Missed.

If $\frac{d}{dt}\hat{s}(\tilde{\gamma}(t)) = 0$ for any t, then $\hat{s}(\tilde{\gamma}(1)) = \hat{s}(\tilde{\gamma}(1))$.

Now $s(\gamma(1)) = \operatorname{Par}_{\gamma}^{\nabla^A}(s(\gamma(0)))$ if $\nabla^A_{\dot{\gamma}(t)}s \equiv 0$. On the other hand

$$[\operatorname{Par}_{\gamma}^{A}(\tilde{\gamma}(0)), \hat{s}(\tilde{\gamma}(0))] = \operatorname{Par}_{\gamma}^{A,E}(s(\gamma(0)))$$

$$= [\tilde{\gamma}(0), \hat{s}(\tilde{\gamma}(0))]$$

$$= [\tilde{\gamma}(1), \hat{s}(\tilde{\gamma}(0))]$$

$$= [\tilde{\gamma}(1), \hat{s}(\tilde{\gamma}(1))] \text{ if * holds}$$

$$= s(\gamma(1)).$$

We thus proved that $\operatorname{Par}_{\gamma}^{A,E}(s(\gamma(0))) = s(\gamma(1))$

What?

3.2 Curvature

Definition 3.7. Let $P \xrightarrow{\pi} M$ be a G-principal bundle and A a connection on P. Then $\Omega_A = d_A \omega_A = d\omega_A \circ \operatorname{pr}_{H_A}$ is called the <u>curvature</u> of A.

Remark 3.8. Recall: if X is a manifold and $H \subseteq TX$ is a subbundle, then H is called involutive if $[\eta, \xi] \subseteq H$ for all vector fields $\eta, \xi \in \Gamma(X; H)$.

Theorem 3.9 (Frobenius). Locally there are submanifolds $Y \subseteq X$ such that TY = H if and only if H is involutive.

Proposition 3.10. $\Omega_A \equiv 0 \iff H_A is involutive$

Proof. Let $\xi, \eta \in \Gamma(P; H_A)$. Then

$$\Omega_{A}(\xi, \eta) = d\omega_{A}(\xi, \eta)$$

$$= \xi.\omega_{A}(\eta) - \eta.\omega_{A}(\xi) - \omega_{A}([\xi, \eta])$$

$$= -\omega_{A}([\xi, \eta])$$

$$\neq 0 \text{ iff } [\xi, \eta] \text{ has a vertical component.}$$

where we used that $\omega_A(\eta) = \omega_A(\xi) = 0$ by the definition of ω_A .

The last statement in the equation follows since $\omega_A|_{VTP}: VTP \to P \times \mathfrak{g}$ is an isomorphism.

Proposition 3.11. $R_q^*\Omega_A = \operatorname{ad}_{g^{-1}}$

Proof.

$$\begin{split} R_g^* d_A \omega_A &= d\omega_A \circ \operatorname{pr}_{H_A} \circ dR_g \\ &= d\omega_A \circ dR_g \circ \operatorname{pr}_{H_A} \text{since } H_A \text{ is G-invariant} \\ &= dR_g^* \omega_A \circ \operatorname{pr}_{H_A} \\ &= d\operatorname{ad}_{g^{-1}} \omega_A \circ \operatorname{pr}_{H_A} \text{since} R_g^* \omega_A = \operatorname{ad}_{g^{-1}} \\ &= \operatorname{ad}_{g^{-1}} \circ \Omega_A \text{by commutativity of d and ad} \end{split}$$

So $\Omega_A \in \Omega^2_{horiz,ad}(P; \mathfrak{g})$. Under $\Omega^2_{horiz,ad}(P; \mathfrak{g}) \simeq \Omega^2(M; ad(P)) = P \times_{ad} \mathfrak{g}$) we denote the image by $F_A = \overline{\Omega}_A$.

Proposition 3.12 (Cartan's formula). $\Omega_A = d\omega_A + \frac{1}{2}[\omega_A \wedge \omega_A]$, where the latter is a hybrid notation for $[,] \otimes \wedge$.

Proof. Check for $\Omega_A(\xi, \eta)$.

Say first ξ, η are both vertical vector fields, without loss of generality $\xi = X_p^{\#}$ and $\eta = Y_p^{\#}$. Then LHS is identically zero since horizontal. RHS is this.

$$\left(d\omega_{A} + \frac{1}{2} \left[\omega_{A} \wedge \omega_{A}\right]\right) (X^{\#}, Y^{\#})
= d\omega_{A}(X^{\#}, Y^{\#}) + \frac{1}{2} \left[\omega_{A}(X^{\#}), \omega_{A}(Y^{\#})\right] - \frac{1}{2} \left[\omega_{A}(Y^{\#}), \omega_{A}(X^{\#})\right]
= X^{\#}\omega_{A}(Y^{\#}) - Y^{\#}\omega_{A}(X^{\#}) - \omega_{A}(\left[X^{\#}, Y^{\#}\right]) + \left[\omega_{A}(X^{\#}), \omega_{A}(Y^{\#})\right]
= -\omega_{A}(\left[X, Y\right]^{\#}) + \left[X, Y\right] \text{ since } \omega_{A}(X^{\#}) = X \text{ and is constant}
= -\left[X, Y\right] + \left[X, Y\right] = 0$$

Now let one vector field be horizontal \tilde{v} , that is, G-invariant horizontal

lift of $v \in \Gamma(TM)$. Again LHS is zero, and compute the RHS.

$$\begin{split} d\omega_A(\widetilde{v},X^\#) &= \widetilde{v}\omega_A(X^\#) - X^\#\omega_A(\widetilde{v}) - \omega_A([\widetilde{v},X^\#]) \\ &= \widetilde{v}(X) - X^\#(0) - \omega_A([\widetilde{v},X^\#]) = 0 \text{ since} \\ [X^\#,\widetilde{v}]_p &= \left.\frac{d}{dt}\right|_{t=0} d\left(R_{e^{-tX}}\widetilde{v}_{pe^{tX}}\right) \\ &= \left.\frac{d}{dt}\right|_{t=0} d\left(\widetilde{v}_p\right) \text{ since } \widetilde{v} \text{ is a G-invariant horizontal lift} \\ &= 0 \end{split}$$

 $[\omega_A \wedge \omega_A](\tilde{v}, X^{\#}) = 0$ since \tilde{v} is horizontal.

Now both are horizontal and R_q -invariant, $\widetilde{v}, \widetilde{w}$. LHS is:

$$\Omega_{A}(\widetilde{v}, \widetilde{w}) = d\omega_{A}(\widetilde{v}, \widetilde{w})$$

$$= \widetilde{v}\omega_{A}(\widetilde{w}) - \widetilde{w}\omega_{A}(\widetilde{v}) - \omega_{A}([\widetilde{v}, \widetilde{w}])$$

$$= 0 \text{ since } \omega_{A}(horizontal) = 0.$$

RHS is

$$(d\omega_A + \frac{1}{2}[\omega_A \wedge \omega_A])(\tilde{v}, \tilde{w}) = d\omega_A(\tilde{v}, \tilde{w}) + 0.$$

Proposition 3.13. Let $\alpha \in \Omega^1(P; V)$. Then $d_A \alpha = d\alpha + \rho_*(\omega_A) \wedge \alpha$ where $\rho : G \to \operatorname{Aut}(V)$ and $\rho_* : \mathfrak{g} \to \operatorname{End}(V)$ is its derivative.

Proof. Just as with Cartan's formula, check on pairs of vertical and horizontal, horizontal and horizontal, vertical and vertical sections. \Box

Remark 3.14. Also true for
$$\alpha \in \Omega_{\rho,horiz}^k(P;V)$$
, where $(\rho_*(\omega_A) \wedge \alpha) (\xi_0, \dots, \xi_k) = \sum_{i=0}^k (-1)^i \rho_*(\omega_A(\xi_i)) \alpha(\xi_0, \dots, \hat{\xi}_i, \dots, \xi_k)$.

Recall that for any two connections A, A' there exists a 1-form $a \in \Omega^1_{\rho-eq,horiz}(P;\mathfrak{g})$ such that $\omega_{A'} = \omega_A + a$.

Proposition 3.15. $\Omega_{A+a} = \Omega_A + d_A a + \frac{1}{2} [a \wedge a]$

Proof.

$$\begin{split} \Omega_{A+a} &= d\omega_{A+a} + \frac{1}{2}[\omega_{A+a} \wedge \omega_{A+a}] \\ &= d\omega_A + da + \frac{1}{2}[\omega_A \wedge \omega_A] \\ &+ \frac{1}{2}[\omega_A \wedge a] + \frac{1}{2}[a \wedge \omega_A] + \frac{1}{2}[a \wedge a] \\ &= \Omega_A + da + [\omega_A \wedge a] + \frac{1}{2}[a \wedge a] \\ &= \Omega_A + d_A a + \frac{1}{2}[a \wedge a] \end{split}$$

applying the previous proposition to $\rho = \mathrm{ad}$, $\rho_* = [-,]$.

Proposition 3.16 (Bianchi's identity). $d_A\Omega_A = 0$

Proof.

$$d_{A}\Omega_{A}(\xi,\eta,\lambda) = d\Omega_{A}(\xi,\eta,\lambda) + [\omega_{A} \wedge \Omega_{A}](\xi,\eta,\lambda) \text{ by a Proposition}$$

$$= \frac{1}{2}d[\omega_{A} \wedge \omega_{A}](\xi,\eta,\lambda) + [\omega_{A} \wedge d\omega_{A}](\xi,\eta,\lambda) + [\omega_{A} \wedge \frac{1}{2}[\omega_{A} \wedge \omega_{A}]](\xi,\eta,\lambda)$$

$$= \frac{1}{2}[d\omega_{A} \wedge \omega_{A}](\ldots) - \frac{1}{2}[\omega_{A} \wedge d\omega_{A}](\ldots) + [\omega_{A} \wedge d\omega_{A}](\ldots)$$

$$+ \frac{1}{2}[\omega_{A} \wedge [\omega_{A} \wedge \omega_{A}](\ldots)$$

$$= \frac{1}{2}[\omega_{A} \wedge [\omega_{A} \wedge \omega_{A}](\xi,\eta,\lambda).$$

Now without loss of generality $\xi, \eta, \lambda = X^\#, Y^\#, Z^\#$ for $X, Y, Z \in \mathfrak{g}$. So the last term is zero because of the Jacobi identity [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.

Proposition 3.17. For $\alpha \in \Omega^k_{horiz,\rho}(P;V)$ and A a connection on P we have $d_Ad_A\alpha = \rho_*(\Omega_A) \wedge \alpha$.

Proof.

$$d_A d_A \alpha = d(d\alpha + \rho_*(\omega_A) \wedge \alpha)$$

$$+ \rho_*(\omega_A) \wedge (d\alpha + \rho_*(\omega_A) \wedge \alpha) \text{by a Proposition above}$$

$$= \rho_*(d\omega_A) \wedge \alpha - \rho_*(\omega_A) \wedge d\alpha$$

$$+ \rho_*(\omega_A) \wedge d\alpha + \rho_*(\omega_A) \wedge \rho_*(\omega_A) \wedge \alpha$$

Now

$$(\rho_*(\omega_A) \wedge \rho_*(\omega_A)) (\xi, \eta) = (\rho_*(\omega_A)(\xi))\rho_*(\omega_A(\eta)) - \rho_*(\omega_A(\eta))\rho_*(\omega_A(\xi))$$
$$= [\rho_*(\omega_A(\xi)), \rho_*(\omega_A(\eta))] \text{ Lie bracket in End}(V)$$
$$= \rho_*([\omega_A(\xi), \omega_A(\eta)]) \text{ since } \rho_* \text{ is a Lie alg. homom.}$$

$$= \rho_* \left(\frac{1}{2} [\omega_A \wedge \omega_A] \right) (\xi, \eta)$$
 from Cartan's formula.

The last step is the following. Write $\omega = \sum X_i \alpha_i$ where $X_i \in \mathfrak{g}$ and $\alpha_i \in \Omega^1(P)$.

$$[\overline{\omega}_A \wedge \omega_A](\xi, \eta) = \sum_{i,j} [X_i, X_j] \alpha_i \wedge \alpha_j(\xi, \eta)$$

$$= \sum_{i,j} [X_i, X_j] (\alpha_i(\xi) \alpha_j(\eta) - \alpha_i(\eta) \alpha_j(\xi))$$

$$= [\omega_A(\xi), \omega_A(\eta)] - [\omega_A(\eta), \omega_A(\xi)]$$

$$= 2[\omega_A(\xi), \omega_A(\eta)]$$

which finishes the proof.

Definition 3.18 (curvature of a covariant derivative).

The <u>curvature</u> of a covariant derivative $\nabla : \Gamma(E) \to \Gamma(T^*M \otimes E)$ is defined by

$$R^{\nabla}(\xi,\eta) = \nabla_{\xi}\nabla_{\eta} - \nabla_{\eta}\nabla_{\xi} - \nabla_{[\xi,\eta]}$$

Proposition 3.19. If A is a connection on $P \to M$ then on $P \times_{\rho} V$ we get a covariant derivative ∇^A induced from A. Then $R^{\nabla_A} = \rho_*(F_A)$ where $F_A \in \Omega^2(M; \operatorname{ad}(P) = P \times_{\operatorname{ad}} \mathfrak{g})$ and $\rho_* : \mathfrak{g} \to \operatorname{End}(V)$.

Proof. Exercise.
$$\Box$$

Next time we will consider

which is defined to be a bundle homomorphism for a Lie group homomorphism $\phi: G \to H$ if $f(pg) = f(p)\phi(g)$ for any p, g.

4 Lecture 3: 29 IV 2021

 $\phi: \mathfrak{g} \to \mathbb{R}$ (or \mathbb{C}) polynomial of degree k, alternatively $\phi: \mathfrak{g}^k \to \mathbb{R}$ multilinear and invariant under permutations (symmetric).

Suppose ϕ is ad-invariant:

$$\phi(\operatorname{ad}_{g} X_{1}, \dots, \operatorname{ad}_{g} X_{k}) = \phi(X_{1}, \dots, X_{k})$$

for any $g \in G$ and $X_1, \ldots, X_k \in \mathfrak{g}$.

Apply this to $g = e^{tX}$ and differentiate at t = 0. Get

$$0 = \frac{d}{dt} \Big|_{t=0} \phi(\operatorname{ad}_{e^{tX}} X_1, \dots, \operatorname{ad}_{e^{tX}} X_k)$$

$$= \phi([X, X_1], X_2, \dots, X_k) + \phi(X_1, [X, X_2], X_3, \dots, X_k) + \dots$$
(1)

Let A be a connection on $P \to M$, define

$$c_{\phi}(A) = \phi(\Omega_A \wedge \ldots \wedge \Omega_A) \in \Omega_{horiz}^{2k}(P)$$

where the curvature Ω_A of A is exterior multiplied 2k times.

Two facts from last time: $d_A\Omega_A=0$ (Bianchi identity) and if $\alpha\in\Omega_{horiz,\rho}(P;V)$ then

$$d_A \alpha = d\alpha + \rho_*(\omega_A) \wedge \alpha \tag{2}$$

(using a hybrid notation at the end, where $\rho_* : \mathfrak{g} \to \operatorname{End}(V)$).

Proposition 4.1. $c_{\phi}(A)$ is closed and for any other connection A' on P the difference $c_{\phi}(A) - c_{\phi}(A')$ is exact, hence $[c_{\phi}(A)] \in H^{2k}(P; \mathbb{R})$ is independent of A.

Proof.

$$dc_{\phi}(A) = \phi(d\Omega_A \wedge \Omega_A \wedge \ldots \wedge \Omega_A) + \phi(\Omega_A \wedge d\Omega_A \wedge \Omega_A \wedge \ldots \Omega_A)$$

$$= k \cdot \phi(d\Omega_A \wedge \Omega_A \wedge \ldots \Omega_A)$$

$$= k \cdot \phi((d\Omega_A + [\omega_A \wedge \Omega_A]) \wedge \Omega_A \wedge \ldots \wedge \Omega_A)$$

$$= k \cdot \phi(d_A\Omega_A \wedge \Omega_A \wedge \ldots)$$

$$= 0 \text{ by Bianchi identity}$$

Indeed, (1) implies

$$0 = \phi([\omega_A \wedge \Omega_A] \wedge \Omega_A \wedge \ldots \wedge \Omega_A) + \phi(\Omega_A \wedge [\omega_A \wedge \Omega_A] \wedge \ldots \wedge \Omega_A) + \ldots$$

Let A' be another connection, $a = A' - A \in \Omega^1_{horiz,ad}(P; \mathfrak{g})$. Then $A_t = A + ta$ is a path of connections from A to A'. Then

$$\Omega_{A_t} = \Omega_A + d_A(ta) + \frac{1}{2}t^2[a \wedge a]$$

$$\implies \frac{d}{dt}\Omega_{A_t} = d_Aa + t[a \wedge a]$$

$$= d_{A_t}a$$

Lemma 4.2. If $B \in \Omega^*_{horiz}(P; \mathbb{R})$ is G-invariant, then $d_AB = dB$.

Proof. Use (2) with ρ trivial.

$$\frac{d}{dt}c_{\phi}(A_{t}) = k \cdot \phi \left(\frac{d\Omega_{A_{t}}}{dt} \wedge \Omega_{A_{t}} \wedge \ldots \wedge \Omega_{A_{t}} \right)$$

$$= k \cdot \phi (d_{A_{t}}a \wedge \Omega_{A_{t}} \wedge \ldots \wedge \Omega_{A_{t}}).$$

$$= k \cdot d_{A_{t}}\phi (a \wedge \Omega_{A_{t}} \wedge \ldots \wedge \Omega_{A_{t}}) \text{ by Bianchi}$$

$$= k \cdot d\phi (a \wedge \Omega_{A_{t}} \wedge \ldots \wedge \Omega_{A_{t}}) \text{ by Lemma}$$

$$\implies c_{\phi}(A') - c_{\phi}(A) = d \left(k \int_{0}^{1} \phi (a \wedge \Omega_{A_{t}} \wedge \ldots \wedge \Omega_{A_{t}}) \right).$$

This finishes the proof of the proposition.

Example 4.3. If \mathfrak{g} matrix Lie algebra of a matrix Lie group G, then $\det(t \cdot \operatorname{Id} + X) = \sum_{k=0} t^k \phi_k(X)$ and ϕ_k is an ad_G -invariant polynomial of degree $\operatorname{rk}(G) - k$.

Example 4.4.
$$G = U(1)$$
 then $\mathfrak{g} = \mathfrak{u}(1) = i\mathbb{R}$.

Remark 4.5. If $P = M \times G$ is the trivial bundle, then it admits the trivial connection pr_1^*TM which has 0 curvature (is integrable).

This implies $[c_{\phi}] = 0$ for any ϕ in this case.

Lemma 4.6. If $\rho: G \to \operatorname{Aut}(V)$ is trivial, then

$$\Omega^*(M;P\times_\rho V)\simeq \Omega^*_{horiz,\rho}(P;V)$$

given by π^* .

Notice that $d\pi^* = \pi^*$. Therefore there exists a unique class $\check{c}_{\phi}(A) \in \Omega(M; \mathbb{R})$ such that $\pi^*\check{c}_{\phi}(A) = c_{\phi}(A)$. In fact $\check{c}_{\phi}(A) = \phi(F_A \wedge \ldots \wedge F_A)$ where $F_A \in \Omega^2(M; \mathrm{ad}(P))$.

Example 4.7.

$$S^1 \longleftrightarrow S^3 \\ \downarrow \\ S^2$$

Hopf fibration given by $\mathbb{C} \ni (z, w) \to [z : w] \in \mathbb{C}P^1$. We will apply the above to $c_{\phi}(A) = -\frac{1}{2\pi i}\Omega_A \in \Omega^2(S^3; \mathbb{R})$.

The ad-action is trivial for $G = S^1$.

Anyway, what is $[\check{c}_{\phi}(A)] \in H^2_{dR}(S^2; \mathbb{R})$? we have the deRham isomorphism $H^2_{dR}(S^2) \to \mathbb{R}$ given by $[\omega] \mapsto \int_{S^2} \omega$. Chart for $\mathbb{C}P^1$ is

$$\phi: \mathbb{C} \to \mathbb{C}P^1$$
$$u \mapsto [u:1].$$

Then $\phi(\mathbb{C}) = \mathbb{C}P^1 \setminus \{[1:0]\}.$

Exercises:

$$\begin{aligned}
\omega_A &= \overline{\omega} d\omega + \overline{z} dz \\
\Omega_A &= d\Omega_A \\
&= d\overline{w} \wedge dw + d\overline{z} \wedge dz \\
&= -dw \wedge d\overline{w} - dz \wedge d\overline{z}.
\end{aligned}$$

Need to find $F_A \in \Omega^2(S^2; i\mathbb{R})$ such that $\pi^* F_A = \Omega_A$. We will express F_A through the chart f.

We are looking for a section:

$$\pi^{-1}(\phi(\mathbb{C})) \subset S^3$$

$$s \downarrow^{\pi} \downarrow^{\pi}$$

$$\phi(\mathbb{C})$$

and in fact $F_A|_{\phi(CC)}=s^*\Omega_A$ because then $\pi^*F_A=\pi^*s^*\Omega_A=\Omega_A$ because something.

$$\pi^{-1}(\phi(\mathbb{C})) \subset S^3$$

$$s \downarrow^{\pi} \mid_{\pi}$$

$$\mathbb{C} \xrightarrow{\phi} \phi(\mathbb{C}) \subset S^3$$

A candidate is $s([u:1]) = \frac{(u,1)}{\sqrt{|u|^2+1}}$. Note it is well-defined since $s(p) = \frac{(\phi^{-1}(p),1)}{\sqrt{|\phi^{-1}(p)|^2+1}}$. Now take $F_A = s^*\Omega_A$ and thus $\phi^*F_A = \phi^*s^*\Omega_A = (s\circ\phi)^*\Omega_A$ and $s\circ\phi(u) = \frac{(u,1)}{\sqrt{|u|^2+1}}$. Get

$$(s \circ \phi)^* \Omega_A = -\left(d\left(\frac{u}{\sqrt{|u|^2 + 1}}\right) \wedge d\left(\frac{\overline{u}}{\sqrt{|u|^2 + 1}}\right)\right) + 0$$

$$d\left(\frac{u}{\sqrt{|u|^2+1}}\right) = \frac{du}{\sqrt{|u|^2+1}} - \frac{1}{2}u\frac{\overline{u}du + ud\overline{u}}{(|u|^2+1)^{3/2}}$$

and similarly for \overline{u} . At the end

$$(s \circ \phi)^* \Omega_A = -\frac{du \wedge d\overline{u}}{|u|^1 + 1} - \frac{1}{2} \frac{|u|^2}{(|u|^2 + 1)^2} du \wedge d\overline{u} - \frac{1}{2} \frac{|u|^2}{(|u|^2 + 1)^2} du \wedge d\overline{u} + 0$$
$$= -\left(\frac{du \wedge d\overline{u}}{(|u|^1 + 1)^2}\right)$$

and thus

$$\int_{\mathbb{C}P^{1}} \left(-\frac{1}{2\pi i} F_{A} \right) = \int_{\phi(\mathbb{C})} \left(-\frac{1}{2\pi i} F_{A} \right)$$

$$= \int_{\mathbb{C}} \left(-\frac{1}{2\pi i} \phi^{*} F_{A} \right)$$

$$= \int_{\mathbb{C}} \frac{1}{2\pi i} \frac{du \wedge d\overline{u}}{(1+|u|^{2})^{2}}$$

$$= -\int_{\mathbb{C}} \frac{1}{\pi} \frac{dx \wedge dy}{(1+|u|^{2})^{2}}$$

$$= -\frac{1}{\pi} \int_{0}^{2\pi} \left(\int_{0}^{\infty} \frac{rdr}{(1+r^{2})^{2}} \right) d\phi$$

$$= -2 \cdot \left(\frac{1}{2} \left(\frac{-1}{1+r^{2}} \right) \right) \Big|_{0}^{\infty}$$

$$= -1$$

Conclusion: $-1 = [c(\text{Hopf bundle})] \in H^2_{dR}(\mathbb{C}P^1)$.

4.1 Reduction and extension of the structure group

Let $\lambda: H \to G$ be a Lie group homomorphism. Let $\pi: P \to M$ be a principal G-bundle.

Definition 4.8. A $\underline{\lambda}$ -reduction of \underline{P} is a principal H-bundle $\pi':Q\to M$ together with a map $\overline{f:Q\to P}$ satisfying:

•

is commutative,

• $f(ph) = f(p)\lambda(h)$ for any $p \in Q, h \in H$ (i.e., of type λ).

Example 4.9. $SO(M) \hookrightarrow Gl(M)$ inclusion of the oriented orthonormal frame bundle is a SO(n)-reduction of the frame bundle of M (exists if TM is orientable).

Remark 4.10. P admits a λ -reduction iff there exists cocycles (g_{ik}) coming from cocycles $h_{ik}: U_i \cap U_k \to H$ such that $g_{ik} = \lambda(h_{ik})$.

Example 4.11.

$$\lambda: S^1 \to S^1$$
$$z \mapsto z^2$$

Claim: the Hopf bundle $S^3 \to S^2$ does not admit a λ -reduction.

Exercise. Use Chern classes later on.

Example 4.12. A U(n)-principal bundle $P \to M$ admits a reduction to a SU(n)-principal bundle iff $P \times_{\text{det}} \mathbb{C}$ is the trivial bundle.

By the way, if we consider the unique connected double cover $\mathrm{Spin}(n) \to \mathrm{SO}(n)$ then a $\mathrm{SO}(n)$ -bundle admits a reduction to a $\mathrm{Spin}(n)$ -bundle if $w_2(P \times_{can} \mathbb{R}^2) = 0$.

5 Exercise session 4 V 2021

We proved a proposition first.

Then we proved this:

Proposition 5.1. If $E = P \times_{\rho} V$, A a connection on P, then

$$\Gamma_G(P;V) \xrightarrow{\rho_*} a$$

$$\downarrow \qquad \qquad \downarrow$$

$$a \xrightarrow{a} a$$

Proof.

Missed.

This implies

$$\left(R_x^{\nabla^A}(v_x, w_x)\varphi\right)(x) = R_x^{\nabla^A}(v_x, w_x)[p, \hat{\varphi}]$$

$$= [p, (\tilde{v}_p.(\tilde{w}.\hat{\varphi}) - \tilde{w}_p.(\tilde{v}.\hat{\varphi}) - \widetilde{[v, w]_p}.\hat{\varphi})(p)] \text{ by (*)}$$

$$= [p, \left([\tilde{v}, \tilde{w}].\hat{\varphi} - \widetilde{[v, w]_p}.\hat{\varphi}\right)(p)]$$

The commutator $[\tilde{v}, \tilde{w}]$ does not need to be horizontal since H_A may not be involutive, but $d\pi([\tilde{v}, \tilde{w}]) = [d\pi(\tilde{v}), d\pi(\tilde{w})] - [v, w] = d\pi([v, w])$. So we get

$$= [p, (\Pi_V([\tilde{v}, \tilde{w}]).\hat{\varphi})(p)$$

$$= -[p, \omega_A([\tilde{v}, \tilde{w}])_p^{\#}.\hat{\varphi}] \text{ by definition of } \omega_A$$

$$= -[p, \Omega_A(\tilde{v}, \tilde{w})^{\#}.\hat{\varphi}]$$

And note that d_A

Missed.

$$\Omega_{A}(\tilde{v}, \tilde{w})^{\#}.\hat{\varphi}(p) = \frac{d}{dt} \bigg|_{t=0} \varphi \Big(p e^{t\hat{\Omega}_{A}(\tilde{v}, \tilde{w})} \Big)
= \frac{d}{dt} \bigg|_{t=0} \rho \Big(e^{-t\Omega_{A}(\tilde{v}, \tilde{w})} \Big)
= -\rho_{*}(\Omega_{A}(\tilde{v}, \tilde{w}))\hat{\varphi}(p)$$

And we end with

$$= [p, \rho_*(\Omega_A(\tilde{v}, \tilde{w}))\hat{\varphi}(p)]$$

and thus

$$R_x^{\nabla^A}(v_x, w_x)[p, \hat{\varphi}(p)] = [p, \rho_*(\Omega_A(\tilde{v}, \tilde{w}))\hat{\varphi}(p)]$$

Fill in using https://drive.google.com/file/d/1MSc7NIcqWuKAHvGQv4rbwGx6TBQS07No/view.

6 Lecture 4: 6 V 2021

Example 6.1. Of a reduction. The tangent bundle to $\mathbb{C}P^2$ admits a reduction with respect to $S^1 \to S^1$, $z \mapsto z^2$, and thus a spin structure.

Definition 6.2. In the above situation (previous lecture), P is called a λ -extension of Q.

Extensions always exist. Indeed, let us take

$$H \longleftrightarrow Q$$

$$\downarrow$$

$$M$$

and $\lambda: H \to G$. Then taking $P = Q \times G/H$ where H acts by

$$(h,(q,g))\mapsto (qh,\lambda(h)g).$$

The right G-action on P is induced from

$$((q,g),g')\mapsto (q,gg').$$

Then $f: Q \to P$ of type λ is given by f(q) = [q, e].

6.1 Reductions, extensions and connections

Proposition 6.3. Let

and f be of type $\lambda: H \to G$. Let A be a connection on Q. Then there is a unique connection A' on P such that $df_q((H_A)_q) = (H_{A'})_{f(q)} \subseteq TP$ for any q. Thus satisfies:

$$f^*\omega_{A'} = \lambda_* \circ \omega_A,\tag{3}$$

$$f^*\Omega_{A'} = \lambda_* \circ \Omega_A. \tag{4}$$

Here $\lambda_* : \mathfrak{g} \to \mathfrak{h}$ is the associated Lie algebra homomorphism.

Proof. Let p = f(q)g. Define

$$(H_{A'})_p = dR_g \Big(df_q \Big((H_A)_q \Big) \Big).$$

Check that this is independent of q with the property $\pi_P(p) = \pi_Q(q)$ (this uses the H-invariance of H_A and the fact that f is of type λ .

The $H_{A'}$ then are clearly G-invariant and they form a complement:

$$\pi_P \circ f = \pi_Q$$

$$\implies (d\pi_P)_{f(q)} \circ df_q|_{H_A} \xrightarrow{\simeq} TM_{\pi_Q(q)}$$

so $df_q((H_A)_q)$ is a complement to $VTP_{f(q)} = \ker(d\pi_P)_{f(q)}$. So $H_{A'}$ is a connection. Uniqueness follows from the required G-invariance.

Consider $X \in \mathfrak{h}$.

$$(f^*\omega_{A'})(X^\#) = \omega_{A'}(df(X^\#))$$
 by definition.

$$df_{q}(X^{\#}) = \frac{d}{dt} \Big|_{t=0} f(qe^{tX})$$

$$= \frac{d}{dt} \Big|_{t=0} f(q)\lambda(e^{tX})$$

$$= \frac{d}{dt} \Big|_{t=0} f(q)e^{t\lambda_{*}X}$$

$$= (\lambda_{*}X)_{f(q)}^{\#}$$

$$= \omega_{A} \cdot ((\lambda_{*}(X))^{\#})$$

$$= \lambda_{*}(X)$$

This proves the first formula, (3). The second formula, (4), follows from this and

$$\Omega_{A'} = d\omega_{A'} + \frac{1}{2} [\omega_{A'} \wedge \omega_{A'}]$$

$$\implies f^* \Omega_{A'} = df^* \omega_{A'} + \frac{1}{2} [f^* \omega_{A'} \wedge f^* \omega_{A'}]$$

$$= d\lambda_* \omega_A + \frac{1}{2} [\lambda_* \omega_A \wedge \lambda_* \omega_A]$$

$$= \lambda_* \Omega_A \text{ because } \lambda_* \text{ is a Lie alg. hom.}$$

Definition 6.4. A' is called the $\underline{\lambda$ -extension of A and A the $\underline{\lambda}$ -reduction of A'.

Proposition 6.5. Let

be a morphism of type $\lambda: H \to G$ such that λ_* is a Lie algebra isomorphism. Suppose Ais a connection on P. then there exists a unique connection A' denoted by f^*A such that $f^*\omega_A = \lambda_*\omega_{A'}$. Proof. Define

$$\omega_{A'} = \lambda_*^{-1} \circ f^* \omega_A \in \Omega^*(Q; \mathfrak{h}).$$

For instance, this applies to

$$\operatorname{Spin}(n) \xrightarrow{2:1} \operatorname{SO}(n)$$
$$\operatorname{Spin}^{\operatorname{c}}(n) \xrightarrow{2:1} \operatorname{SO}(n) \times S^{1}$$

both inducing Lie algebra isomorphisms.

Definition 6.6 (bundle isomorphism). A bundle homomorphism f of type id_G is called a <u>bundle isomorphism</u>. In particular, $f: P \to P$ of type id_G is called a bundle automorphism.

Definition 6.7 (gauge group). $Aut(P) = \{f : P \to P \text{ of type id}_G\}$ is called the gauge group of P.

Remark 6.8.

$$\operatorname{Aut}(P) \simeq \mathcal{C}_G^{\infty}(P; G)$$

$$= \left\{ \varphi : P \to G \middle| \varphi(pg) = \operatorname{Ad}_g \varphi(p) (= g^{-1} \varphi(p)g) \forall_{p,g} \right\}$$

Indeed, given φ we set $f(p)=p\varphi(p)$ and get $f(pg)=pg\varphi(pg)=pgg^{-1}\varphi(p)g=f(p)g$.

In other words,

$$\operatorname{Aut}(P) \simeq \Gamma(M; \operatorname{Ad}(P) = P \times_{\operatorname{Ad}} G).$$

Note Ad(P) is not a principal G-bundle.

Proposition 6.9. Let $f \in \operatorname{Aut}(P)$ and $\varphi_f : P \to G$ be the associated map. Then f^*A (defined by $\omega_{f^*A} = f^*\omega_A$) satisfies:

- 1. $\omega_{f^*A} = \operatorname{Ad}_{\varphi^{-1}} \omega_A + \varphi^{-1} d\varphi$ (the last one is left multiplication in the Lie group),
- 2. $d_{f^*A} = f^* \circ d_A \circ (f^*)^{-1}, \ \Omega_{f^*A} = \operatorname{Ad}_{\varphi_f^{-1}} \circ \Omega_A.$

Proof. Exercise. (Baum, Thm 3.22)

6.2 Chern-Weil theory again

$$G \longleftrightarrow P$$

$$\downarrow$$

$$M$$

principal bundle. Consider $\phi:\mathfrak{g}^k\to\mathbb{C}$ which is Ad-invariant and symmetric. Get

$$c_{\phi}(A) = \phi(\Omega_A^{\wedge k}) \in \Omega_{horiz,G-invt}^{2k}(P;\mathbb{C}).$$

We have seen $dc_{\phi}(A) = 0$ and $c_{\phi}(A') = c_{\phi}(A) \in d\Omega^*_{horiz,G-invt}(P; \mathbb{R})$.

Lemma 6.10. $\Omega^*_{horiz,G-invt}(P;\mathbb{C}) \simeq \Omega^*(M;\mathbb{C})$ where the inverse map is given by π^* .

Thus there is $\overline{c}_{\phi}(A)$ such that $\pi^*\overline{c}_{\phi}(A) = c_{\phi}(A)$, and we define

$$c_{\phi}(P) = [\overline{c}_{\phi}(A)] \in H^{2k}(M; \mathbb{C}).$$

$$W_P: S_G^*(\mathfrak{g}) \longrightarrow H_{dR}^*(M; \mathbb{C})$$

 $\phi \longmapsto c_{\phi}(P)$

defined on the algebra of symmetric multilinear forms.

Definition 6.12. Given $f: N \to M$, we call $f^*P = \{(n, p) \in N \times P | f(n) = \pi(p)\}$ the pull-back bundle, and get

$$f^*P \xrightarrow{\hat{f}(n,p)=p} P \\ \downarrow \qquad \qquad \downarrow_{\pi} .$$

$$N \xrightarrow{f} M$$

Proposition 6.13. If A is a connection on P, then there is a unique connection A' on f^*P such that $\omega_{A'} = \hat{f}^*\omega_A$.

Proof. Define it by this formula, $\omega_{A'} = \hat{f}^* \omega_A$. Check:

$$\omega_{A'}(X^{\#}) = \omega_A((\hat{f}_*X^{\#})$$
$$= \omega_A(X^{\#}) = X.$$

Theorem 6.14 (functoriality of the Weil homomorphism). For the Weil homomorphism we have

- 1. $c_{\phi}(f^*P) = f^*c_{\phi}(P)$ (or, $W_{f^*P} = f^*W_P$),
- 2. if

and ω of type λ , $\phi \in S_G^*(\mathfrak{g})$ and $\phi_{\lambda} = \phi \circ \lambda_* \in S_G^*(\mathfrak{h})$, then $c_{\phi_{\lambda}}(Q) = c_{\phi}(P)$ (i.e., $W_P(\phi) \circ \lambda_* = W_Q(\phi_{\lambda})$).

Proof. (1) follows from the previous proposition:

$$c_{\phi}(f^*P) = \left[\overline{c}_{\phi}(\hat{f}^*A)\right]$$
$$= \left[f^*c_{\phi}(A)\right]$$
$$= f^*c_{\phi}(P)$$

(2) as well, use the above proposition with the push-forward connection and notice f induces id on M.

Remark 6.15. It can be shown that any principal G-bundle admits a reduction to a maximal compact subgroup (e.g., $U(n) \subseteq GL(n, \mathbb{C})$).

6.3 Chern classes of vector bundles

$$U(n) = \{ B \in GL(n, \mathbb{C}) | B^*B = id \}$$

$$\mathfrak{u}(n) = \{ X \in \mathfrak{gl}(n, \mathbb{C}) | X^* = -X \}$$

Definition 6.16. $\phi_k : \mathfrak{gl}(n,\mathbb{C}) \to \mathbb{C}$ is given by

$$\det\left(t - \frac{1}{2\pi i}X\right) = \sum_{k=0}^{n} \phi_k(X)t^{n-k}.$$

Then ϕ_k are Ad-invariant and $\phi_k|_{\mathfrak{u}(n)}$ take real values. (proof: $\overline{\det(t-\frac{1}{2\pi i}X)} = \det(t+\frac{1}{2\pi i}\overline{X}^t) = \det(t-\frac{1}{2\pi i}X)$).

Any
$$X \in \mathfrak{u}(n)$$
 is diagonalizable, $X = \begin{pmatrix} \lambda_1 & & \\ & \ddots & & \\ & & \lambda_n \end{pmatrix}$. Thus

$$\det\left(t - \frac{1}{2\pi i}X\right) = \prod_{i=1}^{n} \left(t - \frac{\lambda_i}{2\pi i}\right)$$

which implies that

$$\phi_1(X) = -\frac{1}{2\pi i} \operatorname{tr}(X)$$

and

$$\phi_2(X) = \sum_{i < j} \lambda_i \lambda_j \left(-\frac{1}{4\pi^2} \right)$$

$$= -\frac{1}{8\pi^2} \left(\sum_{i,j} \lambda_i \lambda_j - \sum_i \lambda_i^2 \right)$$

$$= \frac{1}{8\pi^2} (\operatorname{tr}(X^2) - \operatorname{tr}(X) \operatorname{tr}(X))$$

and so on, to

$$\phi_n(X) = \left(-\frac{1}{2\pi i}\right)^n \det(X).$$

Theorem 6.17. The elements $\phi_0, \ldots, \phi_n \in \operatorname{Sym}_{U(n)}^*(\mathfrak{u}(n))$ are algebraically independent and generate $\operatorname{Sym}_{U(n)}^*(\mathfrak{u}(n))$.

Proof. $\phi_k(X) = \left(-\frac{1}{2\pi i}\right)\sigma_k(\lambda_1,\ldots,\lambda_n)$, where σ_k is the k-th elementary symmetric polynomial. These symmetric polynomials have the required property.

Theorem 6.18. Let $E = P \times_{\rho_{can}} \mathbb{C}^n$, where P is a principal U(n)-bundle. Then

$$c_k(E) = [\phi_k(F_A \wedge \ldots \wedge F_A))] \in H^{2k}_{dR}(M; \mathbb{R})$$

is the image of the Chern class under

$$H^{2k}(X;\mathbb{Z}) \to H^{2k}(X;\mathbb{R}) \simeq H^{2k}_{dR}(X).$$

The element

$$c(E) = \left[\det \left(1 - \frac{1}{2\pi i} F_A \right) \right]$$
$$= c_0(E) + c_1(E) + \dots c_n(E)$$

is called the total Chern class.

Proof. Sketch. Chern classes are characterized by the axioms:

- $c_1(E_1) = c_1(E_2)$ if $E_1 \simeq E_2$,
- $c(f^*E) = f^*c(E)$ for any $f: N \to M$,
- $c(E_1 \oplus E_2) = c(E_1) \cdot c(E_2)$, (cup product)
- $c_k(E^*) = (-1)^k c_k(E), \ c(\underline{\mathbb{C}}^n) = 1,$
- $\langle c_1(H), [\mathbb{C}P^1] \rangle = -1$ where $H \to \mathbb{C}P^1$ is the tautological line bundle.

The first two follow from the functoriality of the Weil homomorphism, Theorem 6.14.

When $E_1 \oplus E_2$ has a reduction to a $GL(n_1, \mathbb{C}) \times GL(n_2, \mathbb{C})$ -bundle, take a connection respecting this reduction and apply Theorem 6.14.

$$E^*$$
 is associated to the dual representation $\mathrm{U}(n) \to (\mathbb{C}^n)^*$, $(\rho_{can})^*$: $\mathrm{u}(n) \to \mathrm{gl}(n,\mathbb{C})$ mapping $X \mapsto X^* = -X$. We have verified $c_1(H) = -1$ last time.

Example 6.19.
$$c_1(E) = -\frac{1}{2\pi i} [\text{tr}(F_A)]$$

 $c_2(E) = \frac{1}{8\pi^2} [\text{tr}(F_A \wedge F_A) - \text{tr}(F_A) \wedge \text{tr}(F_A)]$

Remark 6.20. If we have a reduction to SU(n), then $c_1(E) = 0$.

Proof.
$$\phi_1|_{\mathrm{su}(n)} = -\frac{1}{2\pi i}\operatorname{tr}|_{\mathrm{su}(n)} = 0$$
 since elements in $\mathrm{su}(n)$ are traceless. \square

6.4 Pontryagin classes

Definition 6.21 (Pontryagin classes). If $E \to M$ is a real vector bundle, then $p_k(E) = (-1)^k c_{2k}(E^{\mathbb{C}})$ is a Pontryagin class. The total Pontryagin class is $p(E) = 1 + p_1(E) + \ldots \in H_{dR}^{4*}(M; \mathbb{R})$.

Theorem 6.22. These can be obtained by the above approach from $\det\left(t-\frac{1}{2\pi}X\right)=\sum_{k=0}^{n}\psi_k(X)t^{n-k}$ on $\mathfrak{gl}(n)$ and $\psi_{2k+1}|_{\mathfrak{o}(n)}=0$ for any k, where $\mathfrak{o}(n)$ is the Lie algebra of $\mathrm{O}(n)=\{A|AA^t=\mathrm{id}\}$, so $\mathfrak{o}(n)=\{X|X^t=-X\}$.

For instance $\mathrm{tr}(X)=\mathrm{tr}(X^t)=\mathrm{tr}(-X)=-\mathrm{tr}(X)$ which implies $\mathrm{tr}(X)=0$.

Random notes

Remind Raphael about recording if needed.

Raphael's lecture notes are available at

https://drive.google.com/file/d/10F8GW2ad0rY9Y0QlUyJbJ1s_GGP9Nasb/view?usp=sharing.