Raphael Zentner's instanton class - notes

Piotr Suwara

May 19, 2021

If you want to contribute to these notes in any way (e.g., you have spotted a typo), email psuwara at impan dot pl.

Contents

1 Lecture 1: 15 IV 2021
 2

1.1 Motivation 2
1.2 Fibre bundles 4
1.3 Associated bundles 5
1.4 Connections in principal bundles 6
2 Recitation 1: 20 IV 2021 9
2.1 Line bundles over the projective space 9
2.2 Lie bracket exercise 10
2.3 Additions to the lecture 11
3 Lecture 2: 22 IV 2021 13
3.1 Parallel transport 13
3.2 Curvature 16
4 Lecture 3: 29 IV 2021 21
4.1 Reduction and extension of the structure group 25
5 Exercise session 4 V 2021 26
6 Lecture 4: 6 V 2021 28
6.1 Reductions, extensions and connections 29
6.2 Chern-Weil theory again 32
6.3 Chern classes of vector bundles 34
6.4 Pontryagin classes 36

Figure 1: This is a test drawing. I am sure Inkscape will prove useful later on, but for now just consider it a weird piece of art.

1 Lecture 1: 15 IV 2021

1.1 Motivation

Theorem 1.1 (Donaldson's Theorem A). If X^{4} is a smooth oriented 4-manifold such that the intersection form

$$
\begin{gathered}
Q_{X}: H^{2}(X ; \mathbb{Z}) \rightarrow H^{2}(X ; \mathbb{Z}) \rightarrow \mathbb{Z} \\
Q_{X}(a, b)=\langle a \cup b,[X]\rangle
\end{gathered}
$$

is negative definite. Then Q_{X} is equivalent over \mathbb{Z} to the diagonal pairing

$$
\begin{aligned}
& \mathbb{Z}^{b_{2}(X)} \times \mathbb{Z}^{b_{2}(X)} \rightarrow \mathbb{Z} \\
& \quad(a, \quad b) \mapsto a^{t}(-\mathrm{Id}) b
\end{aligned}
$$

In contrast:

Theorem 1.2 (Freedman). For any symmetric bilinear unimodular form Q over \mathbb{Z} there exists a topological simply-connected 4-manifold X for which $Q_{X} \simeq Q$.

Since there are many negative definite unimodular quadratic forms, we obtain the following:

Corollary 1.3. There are many topological 4-manifolds which do not admit a smooth structure.

Other results:
Theorem 1.4 (Furuta). Brieskorn homology 3-spheres generate a subgroup $\mathbb{Z}^{\infty} \subseteq \Theta_{\mathbb{Z}}^{3}$ of the homology cobordism group.

Theorem 1.5 (Donaldson). The h-cobordism theorem doesn't hold in dimension 4.

Theorem 1.6 (Taubes). There exist infinitely many distinct smooth structures on \mathbb{R}^{4}.

Note the latter is false for all \mathbb{R}^{n} for $n \neq 4$!

Theorem 1.7 (Kronheimer-Mrowka, Property P). If $K \subseteq S^{3}$ is a knot and $K \neq U, U$ is the unknot, then there exists an irreducible representation $\pi_{1}\left(S_{\frac{p}{q}}^{3}\right) \rightarrow S U(2)$ if $\left|\frac{p}{q}\right| \leq 2$.

Theorem 1.8 (Zentner). If $Y \neq S^{3}$ is a closed 3-manifold then there exist non-trivial representations $\pi_{1}(Y) \rightarrow \mathrm{SL}(2, \mathbb{C})$.

1.2 Fibre bundles

We'll talk about principal fibre bundles, associated vector bundles and connections.

Sources include: Helga Baum: Eichfeld-theorie, Kobayashi-Monizu: Foundations of Differential Geometry.

Definition 1.9 (principal fibre bundle). Let G be a Lie group. A smooth map $\pi: P \rightarrow M$ is called a principal fibre bundle if

- G acts freely on P from the right and is transitive on the fibres,
- π is locally trivial, i.e., for each $x \in M$ there is an open neighborhood $U \ni x$ and a diffeomorphism $\varphi: \pi^{-1}(U) \rightarrow U \times G$ such that (here the diagram comes, oh my) commutes and φ is G-equivariant: $\varphi(p)=$ $(\pi(p), h)$ implies $\varphi(p g)=(\pi(p), h g)$.

Exercise 1.10. π admits a global trivialisation if and only if $\pi: P \rightarrow M$ admits a section $s: M \rightarrow P$ (i.e. $\pi \circ s=\mathrm{id}_{M}$).

Example 1.11 (Hopf bundles). $S^{2 n+1} \subseteq \mathbb{C}^{k+1}$ with S^{1}-action by multiplication $\left(S^{1} \subset \mathbb{C}\right)$. Then $\pi: S^{2 n+1} \rightarrow \mathbb{C} P^{n}=S^{2 n+1} / S^{1}=\left(\mathbb{C}^{k+1} \backslash\{0\}\right) / \mathbb{C}^{*}$ is a principal S^{1}-bundle.
Example 1.12 (quaternionic Hopf bundles). $S^{4 n+3} \subseteq \mathbb{H}^{n+1}, S^{3} \subset$ \mathbb{H} unit spheres. S^{3} acts on $S^{4 n+3}$ in two different ways, from the right $\left(\left(q_{0}, \ldots, q_{n}\right), q\right) \mapsto\left(q_{0} q, \ldots, q_{n} q\right)$ or from the left $\left(\left(q_{0}, \ldots, q_{n}\right), q\right) \mapsto\left(\bar{q} q_{0}, \ldots, \bar{q} q_{n}\right)$ (note that for $q \in S^{3}$ we have $q^{-1}=\bar{q}$).

Then $\pi: S^{4 n+3} \rightarrow \mathbb{H} P^{n}$ is a principal S^{3}-bundle. In particular one gets $S^{7} \pi \mathbb{H} P^{1} \simeq S^{4}$.
Example 1.13 (frame bundles). If $\pi: E \rightarrow M$ is a (complex, real, hermitian, euclidean, etc.) vector bundle of rank r, then

$$
P_{E}=\left\{\left(e_{1}, \ldots, e_{r}\right) \in E^{r} \mid\left(e_{1}, \ldots, e_{r}\right)\right. \text { is a }
$$

(complex, real, unitary, orthogonal, etc.) basis of $\left.E_{m}=\pi^{-1}(m)\right\}$
has a G-action $\left(\mathrm{GL}(r, \mathbb{C}), \mathrm{GL}(r, \mathbb{R}), \mathrm{U}(r), \mathrm{O}(r)\right.$, etc.). This forms $\pi: P_{E} \rightarrow$ M, a principal G-bundle. The action is given by $\left(e_{1}, \ldots, e_{r}\right) g=\left(\sum_{i=1}^{r} g_{1 i}^{\prime} e_{i}, \ldots, \sum_{i=1}^{r} g_{r i}^{\prime} e_{i}\right)$ where $g^{-1}=\left(g_{i j}^{\prime}\right)_{i, j=1, \ldots, r}$.
Example 1.14 (homogeneous spaces). $H \subseteq G$ closed Lie subgroup, G / H is a homogeneous space and $G \rightarrow G / H$ is a principal H-bundle.

1.3 Associated bundles

Definition 1.15 (associated bundle). Let $\pi: P \rightarrow M$ be a principal G-bundle. Suppose V is a vector space and $\rho: G \rightarrow \operatorname{Aut}(V)$ is a group homomorphism. Then $P \times V$ has a right G-action via $(p, v) g=\left(p g, \rho\left(g^{-1}\right) v\right)$ and $\pi: E=P \times{ }_{\rho} G=(P \times V) / G \rightarrow M$ is the associated bundle to P and ρ.

Exercise 1.16. $\pi: E \rightarrow M$ given by $[p, v] \mapsto \pi(p)$ is a vector bundle.
A tautology:
E a G-vector bundle of rank $r, G(E) G$-frame bundle, then $G(E) \times{ }_{G} \mathbb{K}^{r} \rightarrow$ E given by $\left[\left(e_{1}, \ldots, e_{r}\right),\left(z_{1}, \ldots, z_{r}\right)\right] \mapsto \sum z_{i} e_{i}$ is an isomorphism of vector bundles.

Further examples:

$$
\begin{gathered}
T M=\mathrm{GL}(M) \times_{\rho_{c a n}} \mathbb{R}^{n} \\
T^{*} M=\mathrm{GL}(M) \times_{\rho_{c a n}^{*}}\left(\mathbb{R}^{n}\right)^{*} \\
\Lambda^{k} M=\operatorname{GL}(M) \times_{\rho_{c a n} \wedge \ldots \wedge \rho_{c a n}} \Lambda^{k}\left(\mathbb{R}^{n}\right)^{*}
\end{gathered}
$$

Example 1.17 (tautological line bundle over $\mathbb{C} P^{n}$).

$$
H=\left\{(l, \xi) \in \mathbb{C} P^{n} \times \mathbb{C}^{n+1} \mid \xi \in l\right\}
$$

Then

$$
\begin{aligned}
H & \rightarrow L \\
(l, \xi) & \mapsto l
\end{aligned}
$$

is a complex line bundle.
On the other hand, consider $\pi: S^{2 n+1} \rightarrow \mathbb{C} P^{n}, \rho_{k}: S^{1} \rightarrow \operatorname{Aut}(\mathbb{C})$

$$
z \mapsto\left(\xi \mapsto z^{k} \xi\right)
$$

Exercise 1.18.

$$
\begin{aligned}
H & \simeq S^{2 k+1} \times_{\rho_{1}} \mathbb{C} \\
H^{*} & \simeq S^{2 k+1} \times{ }_{\rho_{-1}} \mathbb{C} \\
H^{\otimes l} & \simeq S^{2 k+1} \times_{\rho_{k}} \mathbb{C}
\end{aligned}
$$

Denote the Lie algebra of G by \mathfrak{g}. Then

$$
\begin{aligned}
\operatorname{Ad}: G & \rightarrow \operatorname{Aut}(G) \\
g & \mapsto\left(h \mapsto g h g^{-1}\right)
\end{aligned}
$$

induces

$$
\begin{aligned}
\text { ad }: G & \rightarrow \operatorname{Aut}(\mathfrak{g}) \\
g & \mapsto\left(d \operatorname{Ad}_{g}\right)_{e}: \mathfrak{g} \rightarrow \mathfrak{g}
\end{aligned}
$$

i.e., take the differential of Ad_{g} at $e \in G$. Also define

$$
\operatorname{ad}(P)=P \times_{\mathrm{ad}} \mathfrak{g} .
$$

By the way,

$$
\begin{aligned}
(d \mathrm{ad})_{e}: \mathfrak{g} & \rightarrow \operatorname{End}(\mathfrak{g}), \\
X & \mapsto(Y \mapsto[X, Y]) .
\end{aligned}
$$

1.4 Connections in principal bundles

Let $\pi: P \rightarrow M$ a principal G-bundle. Define

$$
V T P=\operatorname{ker}(d \pi: T P \rightarrow T M)
$$

From the free G-action we get a linear map

$$
\begin{aligned}
& \mathfrak{g} \rightarrow \Gamma(T P) \\
& \xi \mapsto \xi^{\#}
\end{aligned}
$$

where $\xi_{p}^{\#}=\left.\frac{d}{d t}\right|_{t=0}\left(\rho e^{t \xi}\right)$ using the $e^{v}=\exp (v)$ the exponential map of G.
Observe that $\xi^{\#} \in \Gamma(V T P)$.
Exercise 1.19. Denote by R_{g} the right g-action. Then the diagram commutes:

Exercise 1.20. $[\xi, \eta]^{\#}=\left[\xi^{\#}, \eta^{\#}\right]$

Lemma 1.21. We get a trivialization $\#: P \times \mathfrak{g} \rightarrow V T P$.

Definition 1.22 (connection). A connection on P is a $\operatorname{dim} M$ dimensional subbundle $H \subset T P$ which is complementary to $V T P$, i.e., $H \cap V T P=0$ and $T P=V T P+H$ (shortly $T P=V T P \oplus H$) and equivariant with respect to the G-action, i.e., $d R_{g}(H)=H$ for any $g \in G$.

Remark 1.23. $\left.d \pi\right|_{H}: H \rightarrow T M$ is an isomorphism.

Definition 1.24 (connection 1-form). If H is a connection on $\pi: P \rightarrow$ M, then we define the associated connection 1-form $\omega_{H} \in \Omega^{1}(P ; \mathfrak{g})$ by the composition

$$
T P_{p} \xrightarrow{\mathrm{pr}_{\| H}} V T P_{p} \xrightarrow[\simeq]{(\#)^{-1}} \mathfrak{g}
$$

Remark 1.25. $\omega_{H}\left(X^{\#}\right)=X$

Remark 1.26. $R_{g}^{*} \omega_{H}=\operatorname{ad}_{g^{-1}} \omega_{H}$ by Exercise 1.19 and since H is $R_{g^{-}}$ invariant.

Remark 1.27. $H=\operatorname{ker}\left(\omega_{H}: T P \rightarrow \mathfrak{g}\right)$

Lemma 1.28. Suppose on the other hand that $\omega \in \Omega^{1}(P ; \mathfrak{g})$ satisfies $\omega\left(X^{\#}\right)=X$ for any $X \in \mathfrak{g}$ and $R_{g}^{*} \omega=\operatorname{ad}_{g^{-1}} \omega$ for any $g \in G$. Then $H_{\omega}=\operatorname{ker}(\omega: T P \rightarrow \mathfrak{g})$ is a connection.

Remark 1.29. The two constructions are inverses to each other: $\operatorname{ker} \omega_{H}=H$ and $\omega_{H_{\omega}}=\omega$.

Definition 1.30 (notation for connections). We write A for a connection and H_{A} or ω_{A} to make explicit its manifestation.

Definition 1.31 (horizontal forms of type ρ). Let $\alpha \in \Omega^{k}(P ; V)$ and $\rho: G \rightarrow \operatorname{Aut}(V)$. The α is called

- horizontal $\alpha\left(\xi_{1}, \ldots, \xi_{k}\right)=0$ whenever any ξ_{i} is vertical,
- of type ρ if $R_{g}^{*} \alpha=\rho(g)^{-1} \circ \alpha$.

Denote horizontal forms of type ρ by

$$
\Omega_{h o r i z, \rho}^{k}(P ; V)
$$

Proposition 1.32.

$$
\begin{aligned}
\Omega_{\rho, h o r i z}^{k}(P ; V) & \xrightarrow{\rightarrow} \Omega^{k}\left(M ; P \times{ }_{\rho} V\right) \\
\omega & \mapsto \bar{\omega}
\end{aligned}
$$

is an isomorphism, where

$$
\Omega^{k}\left(M ; P \times_{\rho} V\right)=\Gamma\left(M ; \Lambda^{k} T^{*} M \otimes P \times_{\rho} V\right)
$$

and

$$
\bar{\omega}_{x}\left(v_{1}, \ldots, v_{k}\right)=\left[p, \omega\left(\xi_{1}, \ldots, \xi_{k}\right)\right]
$$

where $\pi(p)=x$ and $d \pi_{p}\left(\xi_{i}\right)=v_{i}$ for any i.
Remark 1.33. The bracket above does not denote the Lie bracket but the equivalence class of an element in $P \times{ }_{\rho} V$.

Proof. Independence of lifts: if $d \pi_{p}\left(\xi_{i}\right)=d \pi_{p}\left(\xi_{i}^{\prime}\right)$ then $\xi_{i}-\xi_{i}^{\prime} \in V T P$, so by horizontality of ω we get $\omega\left(\ldots, \xi_{i}, \ldots\right)=\omega\left(\ldots, \xi_{i}^{\prime}, \ldots\right)$.

Independence of $p \in \pi^{-1}(x)$ follows since ω is of type ρ.
Suppose ω_{A} and $\omega_{A^{\prime}}$ are two 1-forms. Then

$$
\omega_{A}-\omega_{A^{\prime}} \in \Omega_{\mathrm{ad}, \text { horiz }}^{1}(P ; \mathfrak{g})
$$

and therefore there exists $a \in \Omega_{\mathrm{ad}, \text { horiz }}^{1}(P ; \mathfrak{g})$ such that $\omega_{A^{\prime}}=\omega_{A}+a$. We conclude that
Lemma 1.34. The space of connections on $P \rightarrow M$ is an affine space over $\Omega_{\mathrm{ad}, \text { horiz }}^{1}(P ; \mathfrak{g}) \simeq \Omega^{1}(M ; \operatorname{ad}(P))$.

2 Recitation 1: 20 IV 2021

2.1 Line bundles over the projective space

$S^{1} \hookrightarrow S^{2 n+1} \rightarrow \mathbb{C} P^{n}$ is an S^{1}-bundle with action

$$
\left(\left(z_{0}, \ldots, z_{n}\right), w\right) \mapsto\left(z_{0} w, \ldots, z_{n} w\right)
$$

Let

$$
\rho_{k}: \begin{cases}S^{1} & \rightarrow \operatorname{Aut}(\mathbb{C}) \\ z & \mapsto \operatorname{mult}_{z^{k}}\end{cases}
$$

for $k \in \mathbb{Z}$. Get the associated bundle $P \times{ }_{\rho_{k}} \mathbb{C} \rightarrow \mathbb{C} P^{n}$, a complex line bundle.
On the other hand we have H as defined in 1.17. The claim is that $S^{2 k+1} \times_{\rho_{k}} \mathbb{C} \simeq H^{\otimes k}$, where H^{-1} is defined as $H^{*}=\operatorname{Hom}_{\mathbb{C}}(H, \mathbb{C})$.

Starting with ρ_{1}, we define

via

$$
\left(\left(z_{0}, \ldots, z_{r}\right), w\right) \xrightarrow{f_{1}}\left(\left[z_{0}, \ldots, z_{r}\right],\left(z_{0}, \ldots, z_{r}\right) \cdot w\right) .
$$

We directly check it descends to a bundle homomorphism. Since it is an isomorphism on fibers, it is a bundle isomorphism because of the general fact:

Proposition 2.1.

$$
\begin{aligned}
\operatorname{GL}(n) & \rightarrow \operatorname{GL}(n) \\
(\operatorname{Aut}(V) & \rightarrow \operatorname{Aut}(V)) \\
B & \mapsto B^{-1}
\end{aligned}
$$

is a smooth map (polynomial for $\mathrm{U}(n), \mathrm{O}(n), \ldots$).
Similarly, for $k>0$ define

$$
\begin{gathered}
P \times \mathbb{C} \xrightarrow{f_{k}} H^{\otimes k} \\
\left(\left(z_{0}, \ldots, z_{r}\right), w\right) \mapsto w \cdot(\underline{z} \otimes \ldots \underline{z}) .
\end{gathered}
$$

The action of G via $R_{g} \times \rho_{k}$ gives $(\underline{z}, w) \simeq\left(\underline{z} \cdot u, u^{-1} w\right)$ and f_{k} descends to the quotient since $(\underline{z} u)^{\otimes k}=u^{k} \underline{z}$.

We turn to the case $k<0$. Start with $k=-1$.

$$
\begin{aligned}
& P \times \mathbb{C} \xrightarrow{f_{-1}} H^{*} \\
& (\underline{z}, w) \mapsto w \cdot\langle\underline{z},-\rangle_{\mathbb{C}}
\end{aligned}
$$

This works because for $u \in S^{1}, \bar{u} \cdot u=1$.

2.2 Lie bracket exercise

We wanna prove $[X, Y]^{\#}=\left[X^{\#}, Y^{\#}\right]$ as well as commutativity of the diagram:

The commutativity of the diagram is proven this way:

$$
\begin{aligned}
\left.\operatorname{ad}_{g^{-1}}(X)\right)_{p g}^{\#} & =\left.\frac{d}{d t}\right|_{t=0} p g e^{t \operatorname{ad}_{g^{-1}}(X)} \\
& =\left.\frac{d}{d t}\right|_{t=0} p g g^{-1} e^{s X} g \\
& =\left.\frac{d}{d s}\right|_{s=0} p e^{s X} g \\
& =\left.\frac{d}{d s}\right|_{s=0} R_{g}\left(p e^{s X}\right) \\
& =d R_{g}\left(X_{p}^{\#}\right)
\end{aligned}
$$

Now recall that on one hand, in the Lie algebra, we have

$$
[X, Y]=\left.\frac{d}{d s}\right|_{s=0} \operatorname{ad}_{e^{s X}}(Y)
$$

and on a manifold, if ϕ_{ξ}^{t} denotes the flow of ξ, then

$$
[\xi, \eta](p)=\left.\frac{d}{d t}\right|_{t=0} d \phi_{\xi}^{-t}\left(\eta_{\phi_{\xi}^{t}(p)}\right)
$$

We have $G \hookrightarrow P \rightarrow M$. Firstly we claim $\phi_{X^{\#}}^{t}=R_{e^{t X}}$:

$$
\begin{aligned}
R_{e^{t X}}(p) & =\left.\frac{d}{d s}\right|_{s=0} R_{e^{(t+s) X}}(p) \\
& =X_{p e^{t X}}^{\#}=X_{R_{e^{t X}}(p)}^{\#}
\end{aligned}
$$

because $R_{e^{(t+s) X}}=R_{e^{s X}} \circ R_{e^{t X}}$.

$$
\begin{aligned}
{\left[X^{\#}, Y^{\#}\right](p) } & =\left.\frac{d}{d t}\right|_{t=0} d R_{e^{-t X}}\left(Y_{e^{t X}(p)}^{\#}\right) \\
& =\left.\left.\frac{d}{d t}\right|_{t=0} d R_{e^{-t X}} \frac{d}{d s}\right|_{s=0}\left(p e^{t X}\right) e^{s Y} \\
& =\left.\left.\frac{d}{d t}\right|_{t=0} \frac{d}{d s}\right|_{s=0} R_{e^{t X} e^{s Y} e^{-t X}}(p) \\
& =\left.\frac{d}{d t}\right|_{t=0} R_{\mathrm{ad}_{e^{t X}}(Y)}(p) \\
& =[X, Y]^{\#}(p)
\end{aligned}
$$

2.3 Additions to the lecture

Recall that we have $d: \Omega^{*} N \rightarrow \Omega^{*+1} N$ defined by

$$
\begin{aligned}
d \omega\left(\xi_{0}, \ldots, \xi_{k}\right) & =\sum_{i=0}^{k}(-1)^{i} \tilde{\xi}_{i} \omega\left(\tilde{\xi}_{0}, \ldots, \hat{\tilde{\xi}}_{i}, \ldots, \widetilde{\xi}_{k}\right) \\
& +\sum_{i<j}(-1)^{i+j} \omega\left(\left[\widetilde{\xi}_{i}, \widetilde{\xi}_{j}\right], \widetilde{\xi}_{0}, \ldots, \hat{\widetilde{\xi}}_{i}, \ldots, \hat{\widetilde{\xi}}_{j}, \ldots, \widetilde{\xi}_{k}\right)
\end{aligned}
$$

where $\widetilde{\xi}_{i}$ is a vector field with $\tilde{\xi}_{i}(x)=\xi_{i}$ (the formula is independent of the choice of $\tilde{\xi}_{i}$). In particular, for a 1-form we have

$$
d \omega(\xi, \eta)=\xi \omega(\eta)-\eta \omega(\xi)-\omega([\xi, \eta]) .
$$

Notice that d does not in general preserve $\Omega_{\rho, \text { horiz }}^{*}(P, V)$.
Example 2.2. Consider $P=\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ given by $(t, s) \mapsto t$. Then $\omega=$ $f(s) d t$ is horizontal, but $d \omega=\frac{\partial f}{\partial s} d s \wedge d t$ is not horizontal unless $\frac{\partial f}{\partial s} \equiv 0$.

If we have a connection A on the principal G-bundle $P \rightarrow M$ with horizontal subbundle H_{A}, then define for $\alpha \in \Omega(P, V)$ the differential

$$
d_{A} \alpha=d \alpha \circ \operatorname{pr}_{H_{A}}
$$

i.e., $\left(d_{A} \alpha\right)\left(\xi_{1}, \ldots, \xi_{k}\right)=d \alpha\left(\operatorname{pr}_{H_{A}} \xi_{1}, \ldots, \operatorname{pr}_{H_{A}} \xi_{k}\right)$.

Remark 2.3. $d_{A} \alpha$ is necessarily horizontal, whether or not α has been.
Remark 2.4. If α is of type $\rho: G \rightarrow \operatorname{Aut}(V)$, then $d_{A} \alpha$ is also of this type (because H_{A} is R_{g}-invariant).

In particular, get

$$
d_{A}: \Omega_{\text {horiz, } \rho}^{k}(P, V) \rightarrow \Omega_{h o r i z, \rho}^{k+1}(P, V) .
$$

Definition 2.5. d_{A} is called the covariant derivative of the connection A on P.

Remark 2.6. $d^{2}=0$, but $d_{A} \circ d_{A} \neq 0$ in general.
Definition 2.7. d_{A} descends to

$$
\begin{gathered}
\Omega_{\rho, \text { horiz }}^{k}(P ; V) \xrightarrow{d_{A}} \Omega_{\rho, h o r i z}^{k+1}(P ; V) \\
\downarrow-, \simeq \\
\Omega^{k}(M ; P \times, \simeq \\
\left.{ }_{\rho} V\right) \xrightarrow{-\bar{d}_{A}} \Omega^{k+1}\left(M ; P \times{ }_{\rho} V\right)
\end{gathered}
$$

which we denote by \bar{d}_{A}.

Definition 2.8. Let $E \rightarrow M$ be a vector bundle. A map

$$
\text { nablaa }: \Gamma(E \rightarrow M) \rightarrow \Omega^{1}(E \rightarrow M)=\Gamma\left(T^{*} M \otimes E\right)
$$

satisfying the Leibniz rule

$$
\nabla(f s)=d f \otimes s+f \cdot \nabla a
$$

for any $f \in \mathcal{C}^{\infty}(M)$ and $s \in \Gamma(E)$ is called a covariant derivative.

Proposition 2.9. Let $P \rightarrow M$ be a G-principal bundle and $\rho: G \rightarrow$ Aut (V), then

$$
\bar{d}_{A}: \Gamma\left(M ; P \times_{\rho} V\right) \rightarrow \Omega^{1}\left(M ; P \times_{\rho} V\right)
$$

is a covariant derivative on the vector bundle $P \times{ }_{\rho} V$.

Proof. Unravel the definitions.

Definition 2.10. Let $\gamma:[0,1] \rightarrow M$ be a smooth path. We say $s \in \Gamma(E)$ is parallel with respect to ∇ if $(\nabla s)(\dot{\gamma}(t))=0$ for any t. Then $s(\gamma(1))$ is the result of parallel transport of s along γ.

Note that for geodesics we have $\nabla_{\dot{\gamma}(t)} \dot{\gamma}(t) \equiv 0$.
On the other hand, having

we would like to take a path in M and lift it to a horizontal path in P, to get parallel transport. We'll do that soon.

3 Lecture 2: 22 IV 2021

Recall we have $d_{A}=d \circ \operatorname{pr}_{A}$, that is $d_{A} \alpha=d \alpha \circ \operatorname{pr}_{A}$.

3.1 Parallel transport

Consider a bundle

and a path $\gamma:[a, b] \rightarrow M$. Suppose A is a connection on $P, u \in \pi^{-1}(\gamma(a)$. Then $\exists!\widetilde{\gamma}_{u}:[a, b] \rightarrow P$ such that $\dot{\widetilde{\gamma}}_{u}(t) \in\left(H_{A}\right)_{\gamma(t)}$.

Proof: $d \pi_{H_{A}}: H_{A} \xrightarrow{\simeq} T M$.
Recall that H_{A} is a complement of $V T P$ in $T P$ and is R_{g}-invariant.

Definition 3.1 (parallel transport). We get a map

$$
\operatorname{Par}_{\gamma}^{A}: \begin{cases}\pi^{-1}(\gamma(a)) & \rightarrow \pi^{-1}(\gamma(b)) \\ u & \mapsto \widetilde{\gamma}_{u}(b)\end{cases}
$$

which is called the parallel transport of γ with respect to A.

Proposition 3.2 (properties of parallel transport). $\operatorname{Par}_{\gamma * \mu}^{A}=$ $\operatorname{Par}_{\mu}^{A} \circ \operatorname{Par}_{\gamma}^{A}$ and $\operatorname{Par}_{\gamma}^{A} \circ R_{g}=R_{g} \circ \operatorname{Par}_{\gamma}^{A}$.

Proof. Because H_{A} is R_{g}-invariant.

Exercise 3.3. If $\operatorname{Par}_{\gamma}^{A}$ only depends on the endpoint of γ, then the bundle $P \rightarrow M$ is trivial and A is the trivial connection ($P \simeq M \times G$, trivial connection is $H=\operatorname{pr}_{1}^{*} T M$.

Proof. Hint: define a global section by parallel transport.
By Proposition 3.2 (properties of parallel transport) $\operatorname{Par}_{\gamma}^{A}$ descends to

$$
\operatorname{Par}_{\gamma}^{E, A}: \begin{cases}E_{\gamma(a)} & \rightarrow E_{\gamma(b)} \\ {[p, v]} & \mapsto\left[\operatorname{Par}_{\gamma}^{A}(p), v\right]\end{cases}
$$

on $E=P \times{ }_{\rho} V$.

Definition 3.4 (covariant constancy). Suppose ∇ is a covariant derivative on $E \rightarrow M$ be a smooth path. A section $s \in \Gamma(E \rightarrow M)$ is said to be covariantly constant along γ if

$$
(\nabla s)(\dot{\gamma}(t))=0 \text { for all } t \in[0,1] .
$$

Remark 3.5. This is a differential equation for $\gamma^{*} s$ on $\gamma^{*} E \rightarrow[0,1]$.

This also gives a notion of parallel transport

$$
\operatorname{Par}_{\gamma}^{\nabla}: \begin{cases}E_{\gamma(0)} & \rightarrow E_{\gamma(1)} \\ e & \mapsto s(\gamma(1))\end{cases}
$$

if s is covariantly constant along γ and $e=s(\gamma(0))$.
Proposition 3.6. If ∇_{A} is a covariant derivative on $E=P \times{ }_{\rho} V$ coming from a connection A on P, then

$$
\operatorname{Par}_{\gamma}^{E, A}=\operatorname{Par}_{\gamma}^{\nabla_{A}}
$$

i.e., the two notions coincide.

Proof.

Given in exercises. Review.

Denote by $\stackrel{\wedge}{ }: \Gamma\left(M ; P \times{ }_{\rho} V\right) \rightarrow \Gamma_{\rho}(P ; V)$ and ${ }^{`}: \Gamma_{\rho}(P ; V) \rightarrow \Gamma\left(M ; P \times{ }_{\rho} V\right)$ the isomorphisms...

which

$$
\begin{aligned}
\left(\nabla_{\dot{\gamma}(t)}^{A} s\right)(\gamma(t)) & =\left(\bar{d}_{A} s\right)(\dot{\gamma}(t)) \\
& =d_{A} \hat{s}(\dot{\tilde{\gamma}}(t)) \\
& =\left[\tilde{\gamma}(t), d_{A} \hat{s}(\dot{\tilde{\gamma}}(t))\right] \\
& =[\tilde{\gamma}(t), d s(\dot{\tilde{\gamma}}(t))] \\
& =\left[\tilde{\gamma}(t), \frac{d}{d t} s(\tilde{\gamma}(t))\right] \\
& =\left[\operatorname{Par}_{\gamma}^{A}(\tilde{\gamma}(0)), \frac{d}{d t} s(\tilde{\gamma}(t))\right] \\
& =\operatorname{Par}_{\gamma_{t}}^{A, E}\left(\left[\tilde{\gamma}(0), \frac{d}{d t} \hat{s}(\tilde{\gamma}(t))\right]\right)
\end{aligned}
$$

where $\gamma_{t}=\left.\gamma\right|_{[0, t]}$. This is because
Missed.
If $\frac{d}{d t} \hat{s}(\tilde{\gamma}(t))=0$ for any t, then $\hat{s}(\tilde{\gamma}(1))=\hat{s}(\tilde{\gamma}(1))$.

Now $s(\gamma(1))=\operatorname{Par}_{\gamma}^{\nabla^{A}}(s(\gamma(0)))$ if $\nabla_{\dot{\gamma}(t)}^{A} s \equiv 0$.
On the other hand

$$
\begin{aligned}
{\left[\operatorname{Par}_{\gamma}^{A}(\tilde{\gamma}(0)), \hat{s}(\tilde{\gamma}(0))\right] } & =\operatorname{Par}_{\gamma}^{A, E}(s(\gamma(0))) \\
& =[\tilde{\gamma}(0), \hat{s}(\tilde{\gamma}(0))] \\
& =[\tilde{\gamma}(1), \hat{s}(\tilde{\gamma}(0))] \\
& =[\tilde{\gamma}(1), \hat{s}(\tilde{\gamma}(1))] \text { if * holds } \\
& =s(\gamma(1))
\end{aligned}
$$

We thus proved that $\operatorname{Par}_{\gamma}^{A, E}(s(\gamma(0)))=s(\gamma(1))$
What?

3.2 Curvature

Definition 3.7. Let $P \xrightarrow{\pi} M$ be a G-principal bundle and A a connection on P. Then $\Omega_{A}=d_{A} \omega_{A}=d \omega_{A} \circ \operatorname{pr}_{H_{A}}$ is called the curvature of A.

Remark 3.8. Recall: if X is a manifold and $H \subseteq T X$ is a subbundle, then H is called involutive if $[\eta, \xi] \subseteq H$ for all vector fields $\eta, \xi \in \Gamma(X ; H)$.

Theorem 3.9 (Frobenius). Locally there are submanifolds $Y \subseteq X$ such that $T Y=H$ if and only if H is involutive.

Proposition 3.10. $\Omega_{A} \equiv 0 \Longleftrightarrow H_{A}$ is involutive

Proof. Let $\xi, \eta \in \Gamma\left(P ; H_{A}\right)$. Then

$$
\begin{aligned}
\Omega_{A}(\xi, \eta) & =d \omega_{A}(\xi, \eta) \\
& =\xi \cdot \omega_{A}(\eta)-\eta \cdot \omega_{A}(\xi)-\omega_{A}([\xi, \eta]) \\
& =-\omega_{A}([\xi, \eta]) \\
& \neq 0 \text { iff }[\xi, \eta] \text { has a vertical component. }
\end{aligned}
$$

where we used that $\omega_{A}(\eta)=\omega_{A}(\xi)=0$ by the definition of ω_{A}.

The last statement in the equation follows since $\left.\omega_{A}\right|_{V T P}: V T P \rightarrow P \times \mathfrak{g}$ is an isomorphism.

Proposition 3.11. $R_{g}^{*} \Omega_{A}=\operatorname{ad}_{g^{-1}}$

Proof.

$$
\begin{aligned}
R_{g}^{*} d_{A} \omega_{A} & =d \omega_{A} \circ \operatorname{pr}_{H_{A}} \circ d R_{g} \\
& =d \omega_{A} \circ d R_{g} \circ \operatorname{pr}_{H_{A}} \text { since } H_{A} \text { is } G \text {-invariant } \\
& =d R_{g}^{*} \omega_{A} \circ \operatorname{pr}_{H_{A}} \\
& =d \operatorname{ad}_{g^{-1}} \omega_{A} \circ \operatorname{pr}_{H_{A}} \text { since } R_{g}^{*} \omega_{A}=\operatorname{ad}_{g^{-1}} \\
& =\operatorname{ad}_{g^{-1}} \circ \Omega_{A} \text { by commutativity of } d \text { and ad }
\end{aligned}
$$

So $\Omega_{A} \in \Omega_{h o r i z, \text { ad }}^{2}(P ; \mathfrak{g})$. Under $\left.\Omega_{h o r i z, \text { ad }}^{2}(P ; \mathfrak{g}) \simeq \Omega^{2}(M ; \operatorname{ad}(P))=P \times_{\text {ad }} \mathfrak{g}\right)$ we denote the image by $F_{A}=\bar{\Omega}_{A}$.

Proposition 3.12 (Cartan's formula). $\Omega_{A}=d \omega_{A}+\frac{1}{2}\left[\omega_{A} \wedge \omega_{A}\right]$, where the latter is a hybrid notation for $[,] \otimes \wedge$.

Proof. Check for $\Omega_{A}(\xi, \eta)$.
Say first ξ, η are both vertical vector fields, without loss of generality $\xi=X_{p}^{\#}$ and $\eta=Y_{p}^{\#}$. Then LHS is identically zero since horizontal. RHS is this.

$$
\begin{aligned}
\left(d \omega_{A}+\frac{1}{2}\right. & {\left.\left[\omega_{A} \wedge \omega_{A}\right]\right)\left(X^{\#}, Y^{\#}\right) } \\
& =d \omega_{A}\left(X^{\#}, Y^{\#}\right)+\frac{1}{2}\left[\omega_{A}\left(X^{\#}\right), \omega_{A}\left(Y^{\#}\right)\right]-\frac{1}{2}\left[\omega_{A}\left(Y^{\#}\right), \omega_{A}\left(X^{\#}\right)\right] \\
& =X^{\#} \omega_{A}\left(Y^{\#}\right)-Y^{\#} \omega_{A}\left(X^{\#}\right)-\omega_{A}\left(\left[X^{\#}, Y^{\#}\right]\right)+\left[\omega_{A}\left(X^{\#}\right), \omega_{A}\left(Y^{\#}\right)\right] \\
& =-\omega_{A}\left([X, Y]^{\#}\right)+[X, Y] \text { since } \omega_{A}\left(X^{\#}\right)=X \text { and is constant } \\
& =-[X, Y]+[X, Y]=0
\end{aligned}
$$

Now let one vector field be horizontal \widetilde{v}, that is, G-invariant horizontal
lift of $v \in \Gamma(T M)$. Again LHS is zero, and compute the RHS.

$$
\begin{aligned}
d \omega_{A}\left(\widetilde{v}, X^{\#}\right) & =\widetilde{v} \omega_{A}\left(X^{\#}\right)-X^{\#} \omega_{A}(\widetilde{v})-\omega_{A}\left(\left[\widetilde{v}, X^{\#}\right]\right) \\
& =\tilde{v}(X)-X^{\#}(0)-\omega_{A}\left(\left[\tilde{v}, X^{\#}\right]\right)=0 \text { since } \\
{\left[X^{\#}, \tilde{v}\right]_{p} } & =\left.\frac{d}{d t}\right|_{t=0} d\left(R_{e^{-t X}} \tilde{v}_{p e t} t\right) \\
& =\left.\frac{d}{d t}\right|_{t=0} d\left(\tilde{v}_{p}\right) \text { since } \tilde{v} \text { is a } G \text {-invariant horizontal lift } \\
& =0 \\
{\left[\omega_{A} \wedge \omega_{A}\right]\left(\tilde{v}, X^{\#}\right) } & =0 \text { since } \tilde{v} \text { is horizontal. }
\end{aligned}
$$

Now both are horizontal and R_{g}-invariant, $\widetilde{v}, \widetilde{w}$. LHS is:

$$
\begin{aligned}
\Omega_{A}(\widetilde{v}, \widetilde{w}) & =d \omega_{A}(\widetilde{v}, \widetilde{w}) \\
& =\widetilde{v} \omega_{A}(\widetilde{w})-\widetilde{w} \omega_{A}(\widetilde{v})-\omega_{A}([\widetilde{v}, \widetilde{w}]) \\
& =0 \text { since } \omega_{A}(\text { horizontal })=0 .
\end{aligned}
$$

RHS is

$$
\left(d \omega_{A}+\frac{1}{2}\left[\omega_{A} \wedge \omega_{A}\right]\right)(\tilde{v}, \tilde{w})=d \omega_{A}(\tilde{v}, \tilde{w})+0
$$

Proposition 3.13. Let $\alpha \in \Omega^{1}(P ; V)$. Then $d_{A} \alpha=d \alpha+\rho_{*}\left(\omega_{A}\right) \wedge \alpha$ where $\rho: G \rightarrow \operatorname{Aut}(V)$ and $\rho_{*}: \mathfrak{g} \rightarrow \operatorname{End}(V)$ is its derivative.

Proof. Just as with Cartan's formula, check on pairs of vertical and horizontal, horizontal and horizontal, vertical and vertical sections.

Remark 3.14. Also true for $\alpha \in \Omega_{\rho, \text { horiz }}^{k}(P ; V)$, where $\left(\rho_{*}\left(\omega_{A}\right) \wedge \alpha\right)\left(\xi_{0}, \ldots, \xi_{k}\right)=\sum_{i=0}^{k}(-1)^{i} \rho_{*}\left(\omega_{A}\left(\xi_{i}\right)\right) \alpha\left(\xi_{0}, \ldots, \hat{\xi}_{i}, \ldots, \xi_{k}\right.$.

Recall that for any two connections A, A^{\prime} there exists a 1-form $a \in$ $\Omega_{\rho-e q, \text { horiz }}^{1}(P ; \mathfrak{g})$ such that $\omega_{A^{\prime}}=\omega_{A}+a$.

Proposition 3.15. $\Omega_{A+a}=\Omega_{A}+d_{A} a+\frac{1}{2}[a \wedge a]$

Proof.

$$
\begin{aligned}
\Omega_{A+a} & =d \omega_{A+a}+\frac{1}{2}\left[\omega_{A+a} \wedge \omega_{A+a}\right] \\
& =d \omega_{A}+d a+\frac{1}{2}\left[\omega_{A} \wedge \omega_{A}\right] \\
& +\frac{1}{2}\left[\omega_{A} \wedge a\right]+\frac{1}{2}\left[a \wedge \omega_{A}\right]+\frac{1}{2}[a \wedge a] \\
& =\Omega_{A}+d a+\left[\omega_{A} \wedge a\right]+\frac{1}{2}[a \wedge a] \\
=\Omega_{A}+d_{A} a+\frac{1}{2}[a \wedge a] &
\end{aligned}
$$

applying the previous proposition to $\rho=\mathrm{ad}, \rho_{*}=[-$,$] .$
Proposition 3.16 (Bianchi's identity). $d_{A} \Omega_{A}=0$

Proof.

$$
\begin{aligned}
d_{A} \Omega_{A}(\xi, \eta, \lambda) & =d \Omega_{A}(\xi, \eta, \lambda)+\left[\omega_{A} \wedge \Omega_{A}\right](\xi, \eta, \lambda) \text { by a Proposition } \\
& \left.\left.=\frac{1}{2} d\left[\omega_{A} \wedge \omega_{A}\right](\xi, \eta, \lambda)+\left[\omega_{A} \wedge d \omega_{A}\right](\xi, \eta, \lambda)+\left[\omega_{A} \wedge \frac{1}{2}\left[\omega_{A} \wedge \omega_{A}\right]\right]\right\} \xi, \eta, \lambda\right) \\
& =\frac{1}{2}\left[d \omega_{A} \wedge \omega_{A}\right](\ldots)-\frac{1}{2}\left[\omega_{A} \wedge d \omega_{A}\right](\ldots)+\left[\omega_{A} \wedge d \omega_{A}\right](\ldots) \\
& +\frac{1}{2}\left[\omega_{A} \wedge\left[\omega_{A} \wedge \omega_{A}\right](\ldots)\right. \\
& =\frac{1}{2}\left[\omega_{A} \wedge\left[\omega_{A} \wedge \omega_{A}\right]\right](\xi, \eta, \lambda) .
\end{aligned}
$$

Now without loss of generality $\xi, \eta, \lambda=X^{\#}, Y^{\#}, Z^{\#}$ for $X, Y, Z \in \mathfrak{g}$. So the last term is zero because of the Jacobi identity $[X,[Y, Z]]+[Y,[Z, X]]+$ $[Z,[X, Y]]=0$.

Proposition 3.17. For $\alpha \in \Omega_{h o r i z, \rho}^{k}(P ; V)$ and A a connection on P we have $d_{A} d_{A} \alpha=\rho_{*}\left(\Omega_{A}\right) \wedge \alpha$.

Proof.

$$
\begin{aligned}
d_{A} d_{A} \alpha & =d\left(d \alpha+\rho_{*}\left(\omega_{A}\right) \wedge \alpha\right) \\
& +\rho_{*}\left(\omega_{A}\right) \wedge\left(d \alpha+\rho_{*}\left(\omega_{A}\right) \wedge \alpha\right) \text { by a Proposition above } \\
& =\rho_{*}\left(d \omega_{A}\right) \wedge \alpha-\rho_{*}\left(\omega_{A}\right) \wedge d \alpha \\
& +\rho_{*}\left(\omega_{A}\right) \wedge d \alpha+\rho_{*}\left(\omega_{A}\right) \wedge \rho_{*}\left(\omega_{A}\right) \wedge \alpha
\end{aligned}
$$

Now

$$
\begin{aligned}
\left(\rho_{*}\left(\omega_{A}\right) \wedge \rho_{*}\left(\omega_{A}\right)\right)(\xi, \eta) & =\left(\rho_{*}\left(\omega_{A}\right)(\xi)\right) \rho_{*}\left(\omega_{A}(\eta)\right)-\rho_{*}\left(\omega_{A}(\eta)\right) \rho_{*}\left(\omega_{A}(\xi)\right) \\
& =\left[\rho_{*}\left(\omega_{A}(\xi)\right), \rho_{*}\left(\omega_{A}(\eta)\right)\right] \text { Lie bracket in End }(V) \\
& =\rho_{*}\left(\left[\omega_{A}(\xi), \omega_{A}(\eta)\right]\right) \text { since } \rho_{*} \text { is a Lie alg. homom. } \\
& =\rho_{*}\left(\frac{1}{2}\left[\omega_{A} \wedge \omega_{A}\right]\right)(\xi, \eta) \text { from Cartan's formula. }
\end{aligned}
$$

The last step is the following. Write $\omega=\sum X_{i} \alpha_{i}$ where $X_{i} \in \mathfrak{g}$ and $\alpha_{i} \in$ $\Omega^{1}(P)$.

$$
\begin{aligned}
{\left[\bar{\omega}_{A} \wedge \omega_{A}\right](\xi, \eta) } & =\sum_{i, j}\left[X_{i}, X_{j}\right] \alpha_{i} \wedge \alpha_{j}(\xi, \eta) \\
& =\sum_{i, j}\left[X_{i}, X_{j}\right]\left(\alpha_{i}(\xi) \alpha_{j}(\eta)-\alpha_{i}(\eta) \alpha_{j}(\xi)\right) \\
& =\left[\omega_{A}(\xi), \omega_{A}(\eta)\right]-\left[\omega_{A}(\eta), \omega_{A}(\xi)\right] \\
& =2\left[\omega_{A}(\xi), \omega_{A}(\eta)\right]
\end{aligned}
$$

which finishes the proof.

Definition 3.18 (curvature of a covariant derivative).

The curvature of a covariant derivative $\nabla: \Gamma(E) \rightarrow \Gamma\left(T^{*} M \otimes E\right)$ is defined by

$$
R^{\nabla}(\xi, \eta)=\nabla_{\xi} \nabla_{\eta}-\nabla_{\eta} \nabla_{\xi}-\nabla_{[\xi, \eta]}
$$

Proposition 3.19. If A is a connection on $P \rightarrow M$ then on $P \times{ }_{\rho} V$ we get a covariant derivative ∇^{A} induced from A. Then $R^{\nabla_{A}}=\rho_{*}\left(F_{A}\right)$ where $F_{A} \in \Omega^{2}\left(M ; \operatorname{ad}(P)=P \times_{\text {ad }} \mathfrak{g}\right)$ and $\rho_{*}: \mathfrak{g} \rightarrow \operatorname{End}(V)$.

Proof. Exercise.

Next time we will consider

which is defined to be a bundle homomorphism for a Lie group homomorphism $\phi: G \rightarrow H$ if $f(p g)=f(p) \phi(g)$ for any p, g.

4 Lecture 3: 29 IV 2021

$\phi: \mathfrak{g} \rightarrow \mathbb{R}$ (or \mathbb{C}) polynomial of degree k, alternatively $\phi: \mathfrak{g}^{k} \rightarrow \mathbb{R}$ multilinear and invariant under permutations (symmetric).

Suppose ϕ is ad-invariant:

$$
\phi\left(\operatorname{ad}_{g} X_{1}, \ldots, \operatorname{ad}_{g} X_{k}\right)=\phi\left(X_{1}, \ldots, X_{k}\right)
$$

for any $g \in G$ and $X_{1}, \ldots, X_{k} \in \mathfrak{g}$.
Apply this to $g=e^{t X}$ and differentiate at $t=0$. Get

$$
\begin{align*}
0 & =\left.\frac{d}{d t}\right|_{t=0} \phi\left(\operatorname{ad}_{e^{t X}} X_{1}, \ldots, \operatorname{ad}_{e^{t X}} X_{k}\right) \tag{1}\\
& =\phi\left(\left[X, X_{1}\right], X_{2}, \ldots, X_{k}\right)+\phi\left(X_{1},\left[X, X_{2}\right], X_{3}, \ldots, X_{k}\right)+\ldots
\end{align*}
$$

Let A be a connection on $P \rightarrow M$, define

$$
c_{\phi}(A)=\phi\left(\Omega_{A} \wedge \ldots \wedge \Omega_{A}\right) \in \Omega_{\text {horiz }}^{2 k}(P)
$$

where the curvature Ω_{A} of A is exterior multiplied $2 k$ times.
Two facts from last time: $d_{A} \Omega_{A}=0$ (Bianchi identity) and if $\alpha \in$ $\Omega_{\text {horiz }, \rho}(P ; V)$ then

$$
\begin{equation*}
d_{A} \alpha=d \alpha+\rho_{*}\left(\omega_{A}\right) \wedge \alpha \tag{2}
\end{equation*}
$$

(using a hybrid notation at the end, where $\rho_{*}: \mathfrak{g} \rightarrow \operatorname{End}(V)$).

Proposition 4.1. $c_{\phi}(A)$ is closed and for any other connection A^{\prime} on P the difference $c_{\phi}(A)-c_{\phi}\left(A^{\prime}\right)$ is exact, hence $\left[c_{\phi}(A)\right] \in H^{2 k}(P ; \mathbb{R})$ is independent of A.

Proof.

$$
\begin{aligned}
d c_{\phi}(A) & =\phi\left(d \Omega_{A} \wedge \Omega_{A} \wedge \ldots \wedge \Omega_{A}\right)+\phi\left(\Omega_{A} \wedge d \Omega_{A} \wedge \Omega_{A} \wedge \ldots \Omega_{A}\right) \\
& =k \cdot \phi\left(d \Omega_{A} \wedge \Omega_{A} \wedge \ldots \Omega_{A}\right) \\
& =k \cdot \phi\left(\left(d \Omega_{A}+\left[\omega_{A} \wedge \Omega_{A}\right]\right) \wedge \Omega_{A} \wedge \ldots \wedge \Omega_{A}\right) \\
& =k \cdot \phi\left(d_{A} \Omega_{A} \wedge \Omega_{A} \wedge \ldots\right) \\
& =0 \text { by Bianchi identity }
\end{aligned}
$$

Indeed, (1) implies

$$
0=\phi\left(\left[\omega_{A} \wedge \Omega_{A}\right] \wedge \Omega_{A} \wedge \ldots \wedge \Omega_{A}\right)+\phi\left(\Omega_{A} \wedge\left[\omega_{A} \wedge \Omega_{A}\right] \wedge \ldots \wedge \Omega_{A}\right)+\ldots
$$

Let A^{\prime} be another connection, $a=A^{\prime}-A \in \Omega_{h o r i z, \text { ad }}^{1}(P ; \mathfrak{g})$. Then $A_{t}=$ $A+t a$ is a path of connections from A to A^{\prime}. Then

$$
\begin{aligned}
\Omega_{A_{t}} & =\Omega_{A}+d_{A}(t a)+\frac{1}{2} t^{2}[a \wedge a] \\
\Longrightarrow \frac{d}{d t} \Omega_{A_{t}} & =d_{A} a+t[a \wedge a] \\
& =d_{A_{t}} a
\end{aligned}
$$

Lemma 4.2. If $B \in \Omega_{\text {horiz }}^{*}(P ; \mathbb{R})$ is G-invariant, then $d_{A} B=d B$.

[^0]\[

$$
\begin{aligned}
\frac{d}{d t} c_{\phi}\left(A_{t}\right) & =k \cdot \phi\left(\frac{d \Omega_{A_{t}}}{d t} \wedge \Omega_{A_{t}} \wedge \ldots \wedge \Omega_{A_{t}}\right) \\
& =k \cdot \phi\left(d_{A_{t}} a \wedge \Omega_{A_{t}} \wedge \ldots \wedge \Omega_{A_{t}}\right) . \\
& =k \cdot d_{A_{t}} \phi\left(a \wedge \Omega_{A_{t}} \wedge \ldots \wedge \Omega_{A_{t}}\right) \text { by Bianchi } \\
& =k \cdot d \phi\left(a \wedge \Omega_{A_{t}} \wedge \ldots \wedge \Omega_{A_{t}}\right) \text { by Lemma } \\
\Longrightarrow c_{\phi}\left(A^{\prime}\right)-c_{\phi}(A) & =d\left(k \int_{0}^{1} \phi\left(a \wedge \Omega_{A_{t}} \wedge \ldots \wedge \Omega_{A_{t}}\right)\right) .
\end{aligned}
$$
\]

This finishes the proof of the proposition.
Example 4.3. If \mathfrak{g} matrix Lie algebra of a matrix Lie group G, then $\operatorname{det}(t$. $\operatorname{Id}+X)=\sum_{k=0} t^{k} \phi_{k}(X)$ and ϕ_{k} is an ad_{G}-invariant polynomial of degree $\operatorname{rk}(G)-k$.
Example 4.4. $G=U(1)$ then $\mathfrak{g}=\mathrm{u}(1)=i \mathbb{R}$.
Remark 4.5. If $P=M \times G$ is the trivial bundle, then it admits the trivial connection $\operatorname{pr}_{1}^{*} T M$ which has 0 curvature (is integrable).

This implies $\left[c_{\phi}\right]=0$ for any ϕ in this case.
Lemma 4.6. If $\rho: G \rightarrow \operatorname{Aut}(V)$ is trivial, then

$$
\Omega^{*}\left(M ; P \times_{\rho} V\right) \simeq \Omega_{\text {horiz, }}^{*}(P ; V)
$$

given by π^{*}.
Notice that $d \pi^{*}=\pi^{*}$. Therefore there exists a unique class $\check{c}_{\phi}(A) \in$ $\Omega(M ; \mathbb{R})$ such that $\pi^{*} \check{c}_{\phi}(A)=c_{\phi}(A)$. In fact $\check{c}_{\phi}(A)=\phi\left(F_{A} \wedge \ldots \wedge F_{A}\right.$ where $F_{A} \in \Omega^{2}(M ; \operatorname{ad}(P))$.

Example 4.7.

Hopf fibration given by $\mathbb{C} \ni(z, w) \rightarrow[z: w] \in \mathbb{C} P^{1}$. We will apply the above to $c_{\phi}(A)=-\frac{1}{2 \pi i} \Omega_{A} \in \Omega^{2}\left(S^{3} ; \mathbb{R}\right)$.

The ad-action is trivial for $G=S^{1}$.

Anyway, what is $\left[\check{c}_{\phi}(A)\right] \in H_{\mathrm{dR}}^{2}\left(S^{2} ; \mathbb{R}\right)$? we have the deRham isomorphism $H_{\mathrm{dR}}^{2}\left(S^{2}\right) \rightarrow \mathbb{R}$ given by $[\omega] \mapsto \int_{S^{2}} \omega$. Chart for $\mathbb{C} P^{1}$ is

$$
\begin{aligned}
\phi: \mathbb{C} & \rightarrow \mathbb{C} P^{1} \\
u & \mapsto[u: 1] .
\end{aligned}
$$

Then $\phi(\mathbb{C})=\mathbb{C} P^{1} \backslash\{[1: 0]\}$.
Exercises:

$$
\begin{aligned}
\omega_{A} & =\bar{\omega} d \omega+\bar{z} d z \\
\Omega_{A} & =d \Omega_{A} \\
& =d \bar{w} \wedge d w+d \bar{z} \wedge d z \\
& =-d w \wedge d \bar{w}-d z \wedge d \bar{z}
\end{aligned}
$$

Need to find $F_{A} \in \Omega^{2}\left(S^{2} ; i \mathbb{R}\right)$ such that $\pi^{*} F_{A}=\Omega_{A}$. We will express F_{A} through the chart f.

We are looking for a section:

$$
\begin{gathered}
\pi^{-1}(\phi(\mathbb{C})) \subset S^{3} \\
s \hat{\hat{i}} \downarrow^{3} \\
\vdots(\mathbb{C})
\end{gathered}
$$

and in fact $\left.F_{A}\right|_{\phi(C C)}=s^{*} \Omega_{A}$ because then $\pi^{*} F_{A}=\pi^{*} s^{*} \Omega_{A}=\Omega_{A}$ because something.

$$
\begin{aligned}
& \pi^{-1}(\phi(\mathbb{C})) \subset S^{3} \\
& s \stackrel{\hat{i}}{i},{ }^{2} \\
& \mathbb{C} \xrightarrow{\phi} \phi(\mathbb{C}) \quad \subset S^{3}
\end{aligned}
$$

A candidate is $s([u: 1])=\frac{(u, 1)}{\sqrt{|u|^{2}+1}}$. Note it is well-defined since $s(p)=$ $\frac{\left(\phi^{-1}(p), 1\right)}{\sqrt{\left|\phi^{-1}(p)\right|^{2}+1}}$. Now take $F_{A}=s^{*} \Omega_{A}$ and thus $\phi^{*} F_{A}=\phi^{*} s^{*} \Omega_{A}=(s \circ \phi)^{*} \Omega_{A}$ and $s \circ \phi(u)=\frac{(u, 1)}{\sqrt{|u|^{2}+1}}$. Get

$$
(s \circ \phi)^{*} \Omega_{A}=-\left(d\left(\frac{u}{\sqrt{|u|^{2}+1}}\right) \wedge d\left(\frac{\bar{u}}{\sqrt{|u|^{2}+1}}\right)\right)+0
$$

$$
d\left(\frac{u}{\sqrt{|u|^{2}+1}}\right)=\frac{d u}{\sqrt{|u|^{2}+1}}-\frac{1}{2} u \frac{\bar{u} d u+u d \bar{u}}{\left(|u|^{2}+1\right)^{3 / 2}}
$$

and similarly for \bar{u}. At the end

$$
\begin{aligned}
(s \circ \phi)^{*} \Omega_{A} & =-\frac{d u \wedge d \bar{u}}{|u|^{1}+1}-\frac{1}{2} \frac{|u|^{2}}{\left(|u|^{2}+1\right)^{2}} d u \wedge d \bar{u}-\frac{1}{2} \frac{|u|^{2}}{\left(|u|^{2}+1\right)^{2}} d u \wedge d \bar{u}+0 \\
& =-\left(\frac{d u \wedge d \bar{u}}{\left(|u|^{1}+1\right)^{2}}\right)
\end{aligned}
$$

and thus

$$
\begin{aligned}
\int_{\mathbb{C} P^{1}}\left(-\frac{1}{2 \pi i} F_{A}\right) & =\int_{\phi(\mathbb{C})}\left(-\frac{1}{2 \pi i} F_{A}\right) \\
& =\int_{\mathbb{C}}\left(-\frac{1}{2 \pi i} \phi^{*} F_{A}\right) \\
& =\int_{\mathbb{C}} \frac{1}{2 \pi i} \frac{d u \wedge d \bar{u}}{\left(1+|u|^{2}\right)^{2}} \\
& =-\int_{\mathbb{C}} \frac{1}{\pi} \frac{d x \wedge d y}{\left(1+|u|^{2}\right)^{2}} \\
& =-\frac{1}{\pi} \int_{0}^{2 \pi}\left(\int_{0}^{\infty} \frac{r d r}{\left(1+r^{2}\right)^{2}}\right) d \phi \\
& =-\left.2 \cdot\left(\frac{1}{2}\left(\frac{-1}{1+r^{2}}\right)\right)\right|_{0} ^{\infty} \\
& =-1
\end{aligned}
$$

Conclusion: $-1=[c($ Hopf bundle $)] \in H_{\mathrm{dR}}^{2}\left(\mathbb{C} P^{1}\right)$.

4.1 Reduction and extension of the structure group

Let $\lambda: H \rightarrow G$ be a Lie group homomorphism. Let $\pi: P \rightarrow M$ be a principal G-bundle.

Definition 4.8. A λ-reduction of P is a principal H-bundle $\pi^{\prime}: Q \rightarrow M$ together with a map $\overline{f: Q \rightarrow P \text { satisfying: }}$

is commutative,

- $f(p h)=f(p) \lambda(h)$ for any $p \in Q, h \in H$ (i.e., of type λ).

Example 4.9. $\mathrm{SO}(M) \hookrightarrow G l(M)$ inclusion of the oriented orthonormal frame bundle is a $\mathrm{SO}(n)$-reduction of the frame bundle of M (exists if $T M$ is orientable).

Remark 4.10. P admits a λ-reduction iff there exists cocycles $\left(g_{i k}\right)$ coming from cocycles $h_{i k}: U_{i} \cap U_{k} \rightarrow H$ such that $g_{i k}=\lambda\left(h_{i k}\right)$.

Example 4.11.

$$
\begin{aligned}
\lambda: S^{1} & \rightarrow S^{1} \\
z & \mapsto z^{2}
\end{aligned}
$$

Claim: the Hopf bundle $S^{3} \rightarrow S^{2}$ does not admit a λ-reduction.
Exercise. Use Chern classes later on.
Example 4.12. A $\mathrm{U}(n)$-principal bundle $P \rightarrow M$ admits a reduction to a $\operatorname{SU}(n)$-principal bundle iff $P \times$ det \mathbb{C} is the trivial bundle.

By the way, if we consider the unique connected double cover $\operatorname{Spin}(n) \rightarrow$ $\mathrm{SO}(n)$ then a $\mathrm{SO}(n)$-bundle admits a reduction to a $\operatorname{Spin}(n)$-bundle if $w_{2}\left(P \times_{\text {can }}\right.$ $\left.\mathbb{R}^{2}\right)=0$.

5 Exercise session 4 V 2021

We proved a proposition first.
Then we proved this:

Proposition 5.1. If $E=P \times{ }_{\rho} V$, A a connection on P, then

Proof.

Missed.
This implies

$$
\begin{aligned}
\left(R_{x}^{\nabla^{A}}\left(v_{x}, w_{x}\right) \varphi\right)(x) & =R_{x}^{\nabla^{A}}\left(v_{x}, w_{x}\right)[p, \hat{\varphi}] \\
& \left.=\left[p,\left(\tilde{v}_{p} \cdot(\tilde{w} \cdot \hat{\varphi})-\widetilde{\tilde{w}_{p} \cdot(\tilde{v} \cdot \hat{\varphi}}\right)-\widetilde{[v, w]_{p}} \cdot \hat{\varphi}\right)(p)\right] \text { by }\left(^{*}\right) \\
& =\left[p,\left([\tilde{v}, \tilde{w}] \cdot \hat{\varphi}-[v, w]_{p} \cdot \hat{\varphi}\right)(p)\right]
\end{aligned}
$$

The commutator [\tilde{v}, \tilde{w}] does not need to be horizontal since H_{A} may not be involutive, but $d \pi([\tilde{v}, \tilde{w}])=[d \pi(\tilde{v}), d \pi(\tilde{w})]-[v, w]=d \pi(\widetilde{[v, w]})$. So we get

$$
\begin{aligned}
& =\left[p,\left(\Pi_{V}([\tilde{v}, \tilde{w}]) \cdot \hat{\varphi}\right)(p)\right. \\
& =-\left[p, \omega_{A}([\tilde{v}, \tilde{w}])_{p}^{\#} \cdot \hat{\varphi}\right] \text { by definition of } \omega_{A} \\
& =-\left[p, \Omega_{A}(\tilde{v}, \tilde{w})^{\#} \cdot \hat{\varphi}\right]
\end{aligned}
$$

And note that d_{A}

Missed.

$$
\begin{aligned}
\Omega_{A}(\tilde{v}, \tilde{w})^{\#} \cdot \hat{\varphi}(p) & =\left.\frac{d}{d t}\right|_{t=0} \varphi\left(p e^{\hat{\Omega_{A}}(\tilde{v}, \tilde{w})}\right) \\
& =\left.\frac{d}{d t}\right|_{t=0} \rho\left(e^{-t \Omega_{A}(\tilde{v}, \tilde{w})}\right) \\
& =-\rho_{*}\left(\Omega_{A}(\tilde{v}, \tilde{w})\right) \hat{\varphi}(p)
\end{aligned}
$$

And we end with

$$
=\left[p, \rho_{*}\left(\Omega_{A}(\tilde{v}, \tilde{w})\right) \hat{\varphi}(p)\right]
$$

and thus

$$
R_{x}^{\nabla^{A}}\left(v_{x}, w_{x}\right)[p, \hat{\varphi}(p)]=\left[p, \rho_{*}\left(\Omega_{A}(\tilde{v}, \tilde{w})\right) \hat{\varphi}(p)\right]
$$

Fill in using https://drive.google.com/file/d/1MSc7NIcqWuKAHvGQv4rbwGx6TBQS07No/ view.

6 Lecture 4: 6 V 2021

Example 6.1. Of a reduction. The tangent bundle to $\mathbb{C} P^{2}$ admits a reduction with respect to $S^{1} \rightarrow S^{1}, z \mapsto z^{2}$, and thus a spin structure.

Definition 6.2. In the above situation (previous lecture), P is called a λ-extension of Q.

Extensions always exist. Indeed, let us take

and $\lambda: H \rightarrow G$. Then taking $P=Q \times G / H$ where H acts by

$$
(h,(q, g)) \mapsto(q h, \lambda(h) g) .
$$

The right G-action on P is induced from

$$
\left((q, g), g^{\prime}\right) \mapsto\left(q, g g^{\prime}\right)
$$

Then $f: Q \rightarrow P$ of type λ is given by $f(q)=[q, e]$.

6.1 Reductions, extensions and connections

Proposition 6.3. Let

and f be of type $\lambda: H \rightarrow G$. Let A be a connection on Q. Then there is a unique connection A^{\prime} on P such that $d f_{q}\left(\left(H_{A}\right)_{q}\right)=\left(H_{A^{\prime}}\right)_{f(q)} \subseteq T P$ for any q. Thus satisfies:

$$
\begin{align*}
f^{*} \omega_{A^{\prime}} & =\lambda_{*} \circ \omega_{A} \tag{3}\\
f^{*} \Omega_{A^{\prime}} & =\lambda_{*} \circ \Omega_{A} . \tag{4}
\end{align*}
$$

Here $\lambda_{*}: \mathfrak{g} \rightarrow \mathfrak{h}$ is the associated Lie algebra homomorphism.

Proof. Let $p=f(q) g$. Define

$$
\left(H_{A^{\prime}}\right)_{p}=d R_{g}\left(d f_{q}\left(\left(H_{A}\right)_{q}\right)\right)
$$

Check that this is independent of q with the property $\pi_{P}(p)=\pi_{Q}(q)$ (this uses the H-invariance of H_{A} and the fact that f is of type λ.

The $H_{A^{\prime}}$ then are clearly G-invariant and they form a complement:

$$
\begin{array}{r}
\pi_{P} \circ f=\pi_{Q} \\
\left.\Longrightarrow\left(d \pi_{P}\right)_{f(q)} \circ d f_{q}\right|_{H_{A}} \xrightarrow{\simeq} T M_{\pi_{Q}(q)}
\end{array}
$$

so $d f_{q}\left(\left(H_{A}\right)_{q}\right)$ is a complement to $V T P_{f(q)}=\operatorname{ker}\left(d \pi_{P}\right)_{f(q)}$. So $H_{A^{\prime}}$ is a connection. Uniqueness follows from the required G-invariance.

Consider $X \in \mathfrak{h}$.

$$
\left(f^{*} \omega_{A^{\prime}}\right)\left(X^{\#}\right)=\omega_{A^{\prime}}\left(d f\left(X^{\#}\right)\right) \text { by definition. }
$$

$$
\begin{aligned}
d f_{q}\left(X^{\#}\right) & =\left.\frac{d}{d t}\right|_{t=0} f\left(q e^{t X}\right) \\
& =\left.\frac{d}{d t}\right|_{t=0} f(q) \lambda\left(e^{t X}\right) \\
& =\left.\frac{d}{d t}\right|_{t=0} f(q) e^{t \lambda_{*} X} \\
& =\left(\lambda_{*} X\right)_{f(q)}^{\#} \\
& =\omega_{A} \cdot\left(\left(\lambda_{*}(X)\right)^{\#}\right) \\
& =\lambda_{*}(X)
\end{aligned}
$$

This proves the first formula, (3). The second formula, (4), follows from this and

$$
\begin{aligned}
\Omega_{A^{\prime}} & =d \omega_{A^{\prime}}+\frac{1}{2}\left[\omega_{A^{\prime}} \wedge \omega_{A^{\prime}}\right] \\
\Longrightarrow f^{*} \Omega_{A^{\prime}} & =d f^{*} \omega_{A^{\prime}}+\frac{1}{2}\left[f^{*} \omega_{A^{\prime}} \wedge f^{*} \omega_{A^{\prime}}\right] \\
& =d \lambda_{*} \omega_{A}+\frac{1}{2}\left[\lambda_{*} \omega_{A} \wedge \lambda_{*} \omega_{A}\right] \\
& =\lambda_{*} \Omega_{A} \text { because } \lambda_{*} \text { is a Lie alg. hom. }
\end{aligned}
$$

Definition 6.4. A^{\prime} is called the $\underline{\lambda}$-extension of A and A the $\bar{\lambda}$-reduction of A^{\prime}.

Proposition 6.5. Let

be a morphism of type $\lambda: H \rightarrow G$ such that λ_{*} is a Lie algebra isomorphism. Suppose Ais a connection on P. then there exists a unique connection A^{\prime} denoted by $f^{*} A$ such that $f^{*} \omega_{A}=\lambda_{*} \omega_{A^{\prime}}$.

Proof. Define

$$
\omega_{A^{\prime}}=\lambda_{*}^{-1} \circ f^{*} \omega_{A} \in \Omega^{*}(Q ; \mathfrak{h}) .
$$

For instance, this applies to

$$
\begin{aligned}
\operatorname{Spin}(n) & \xrightarrow{2: 1} \mathrm{SO}(n) \\
\operatorname{Spin}^{\mathrm{c}}(n) & \xrightarrow{2: 1} \mathrm{SO}(n) \times S^{1}
\end{aligned}
$$

both inducing Lie algebra isomorphisms.
Definition 6.6 (bundle isomorphism). A bundle homomorphism f of type id_{G} is called a bundle isomorphism. In particular, $f: P \rightarrow P$ of type id_{G} is called a bundle automorphism.

Definition 6.7 (gauge group). $\operatorname{Aut}(P)=\left\{f: P \rightarrow P\right.$ of type $\left.\operatorname{id}_{G}\right\}$ is called the gauge group of P.

Remark 6.8.

$$
\begin{aligned}
\operatorname{Aut}(P) & \simeq \mathcal{C}_{G}^{\infty}(P ; G) \\
& =\left\{\varphi: P \rightarrow G \mid \varphi(p g)=\operatorname{Ad}_{g} \varphi(p)\left(=g^{-1} \varphi(p) g\right) \forall_{p, g}\right\}
\end{aligned}
$$

Indeed, given φ we set $f(p)=p \varphi(p)$ and get $f(p g)=p g \varphi(p g)=$ $p g g^{-1} \varphi(p) g=f(p) g$.

In other words,

$$
\operatorname{Aut}(P) \simeq \Gamma\left(M ; \operatorname{Ad}(P)=P \times_{\mathrm{Ad}} G\right)
$$

Note $\operatorname{Ad}(P)$ is not a principal G-bundle.
Proposition 6.9. Let $f \in \operatorname{Aut}(P)$ and $\varphi_{f}: P \rightarrow G$ be the associated map. Then $f^{*} A$ (defined by $\omega_{f^{*} A}=f^{*} \omega_{A}$) satisfies:

1. $\omega_{f^{*} A}=\operatorname{Ad}_{\varphi^{-1}} \omega_{A}+\varphi^{-1} d \varphi$ (the last one is left multiplication in the Lie group),
2. $d_{f^{*} A}=f^{*} \circ d_{A} \circ\left(f^{*}\right)^{-1}, \Omega_{f^{*} A}=\operatorname{Ad}_{\varphi_{f}^{-1}} \circ \Omega_{A}$.

Proof. Exercise. (Baum, Thm 3.22)

6.2 Chern-Weil theory again

principal bundle. Consider $\phi: \mathfrak{g}^{k} \rightarrow \mathbb{C}$ which is Ad-invariant and symmetric. Get

$$
c_{\phi}(A)=\phi\left(\Omega_{A}^{\wedge k}\right) \in \Omega_{\text {horiz }, G-\text { invt }}^{2 k}(P ; \mathbb{C})
$$

We have seen $d c_{\phi}(A)=0$ and $c_{\phi}\left(A^{\prime}\right)=c_{\phi}(A) \in d \Omega_{\text {horiz }, G-\text { invt }}^{*}(P ; \mathbb{R})$.
Lemma 6.10. $\Omega_{\text {horiz }, G-\text { invt }}^{*}(P ; \mathbb{C}) \simeq \Omega^{*}(M ; \mathbb{C})$ where the inverse map is given by π^{*}.

Thus there is $\bar{c}_{\phi}(A)$ such that $\pi^{*} \bar{c}_{\phi}(A)=c_{\phi}(A)$, and we define

$$
c_{\phi}(P)=\left[\bar{c}_{\phi}(A)\right] \in H^{2 k}(M ; \mathbb{C}) .
$$

Definition 6.11 (Weil homomorphism). We get the Weil homomorphism

$$
\begin{aligned}
W_{P}: S_{G}^{*}(\mathfrak{g}) & \longrightarrow H_{d R}^{*}(M ; \mathbb{C}) \\
\phi & \longmapsto c_{\phi}(P)
\end{aligned}
$$

defined on the algebra of symmetric multilinear forms.

Definition 6.12. Given $f: N \rightarrow M$, we call $f^{*} P=\{(n, p) \in N \times P \mid$ $f(n)=\pi(p)\}$ the pull-back bundle, and get

Proposition 6.13. If A is a connection on P, then there is a unique connection A^{\prime} on $f^{*} P$ such that $\omega_{A^{\prime}}=\hat{f}^{*} \omega_{A}$.

Proof. Define it by this formula, $\omega_{A^{\prime}}=\hat{f}^{*} \omega_{A}$. Check:

$$
\begin{aligned}
\omega_{A^{\prime}}\left(X^{\#}\right) & =\omega_{A}\left(\left(\hat{f}_{*} X^{\#}\right)\right. \\
& =\omega_{A}\left(X^{\#}\right)=X .
\end{aligned}
$$

Theorem 6.14 (functoriality of the Weil homomorphism). For the Weil homomorphism we have

1. $c_{\phi}\left(f^{*} P\right)=f^{*} c_{\phi}(P)$ (or, $\left.W_{f^{*} P}=f^{*} W_{P}\right)$,
2. if

and ω of type $\lambda, \phi \in S_{G}^{*}(\mathfrak{g})$ and $\phi_{\lambda}=\phi \circ \lambda_{*} \in S_{G}^{*}(\mathfrak{h})$, then $c_{\phi_{\lambda}}(Q)=$ $c_{\phi}(P)\left(\right.$ i.e., $\left.W_{P}(\phi) \circ \lambda_{*}=W_{Q}\left(\phi_{\lambda}\right)\right)$.

Proof. (1) follows from the previous proposition:

$$
\begin{aligned}
c_{\phi}\left(f^{*} P\right) & =\left[\bar{c}_{\phi}\left(\hat{f}^{*} A\right)\right] \\
& =\left[f^{*} c_{\phi}(A)\right] \\
& =f^{*} c_{\phi}(P)
\end{aligned}
$$

(2) as well, use the above proposition with the push-forward connection and notice f induces id on M.

Remark 6.15. It can be shown that any principal G-bundle admits a reduction to a maximal compact subgroup (e.g., $\mathrm{U}(n) \subseteq \mathrm{GL}(n, \mathbb{C})$).

6.3 Chern classes of vector bundles

$$
\begin{aligned}
\mathrm{U}(n) & =\left\{B \in \mathrm{GL}(n, \mathbb{C}) \mid B^{*} B=\mathrm{id}\right\} \\
\mathfrak{u}(n) & =\left\{X \in \mathfrak{g l}(n, \mathbb{C}) \mid X^{*}=-X\right\}
\end{aligned}
$$

Definition 6.16. $\quad \phi_{k}: \mathfrak{g l}(n, \mathbb{C}) \rightarrow \mathbb{C}$ is given by

$$
\left.\operatorname{det}\left(t-\frac{1}{2 \pi i} X\right)\right)=\sum_{k=0}^{n} \phi_{k}(X) t^{n-k}
$$

Then ϕ_{k} are Ad-invariant and $\left.\phi_{k}\right|_{\mathfrak{u}(n)}$ take real values. (proof: $\overline{\operatorname{det}\left(t-\frac{1}{2 \pi i} X\right)}=$ $\left.\operatorname{det}\left(t+\frac{1}{2 \pi i} \bar{X}^{t}\right)=\operatorname{det}\left(t-\frac{1}{2 \pi i} X\right)\right)$.

Any $X \in \mathfrak{u}(n)$ is diagonalizable, $X=\left(\begin{array}{ccc}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n}\end{array}\right)$. Thus

$$
\operatorname{det}\left(t-\frac{1}{2 \pi i} X\right)=\prod_{i=1}^{n}\left(t-\frac{\lambda_{i}}{2 \pi i}\right)
$$

which implies that

$$
\phi_{1}(X)=-\frac{1}{2 \pi i} \operatorname{tr}(X)
$$

and

$$
\begin{aligned}
\phi_{2}(X) & =\sum_{i<j} \lambda_{i} \lambda_{j}\left(-\frac{1}{4 \pi^{2}}\right) \\
& =-\frac{1}{8 \pi^{2}}\left(\sum_{i, j} \lambda_{i} \lambda_{j}-\sum_{i} \lambda_{i}^{2}\right) \\
& =\frac{1}{8 \pi^{2}}\left(\operatorname{tr}\left(X^{2}\right)-\operatorname{tr}(X) \operatorname{tr}(X)\right)
\end{aligned}
$$

and so on, to

$$
\phi_{n}(X)=\left(-\frac{1}{2 \pi i}\right)^{n} \operatorname{det}(X) .
$$

Theorem 6.17. The elements $\phi_{0}, \ldots, \phi_{n} \in \operatorname{Sym}_{U(n)}^{*}(\mathfrak{u}(n))$ are algebraically independent and generate $\operatorname{Sym}_{U(n)}^{*}(\mathfrak{u}(n))$.

Proof. $\phi_{k}(X)=\left(-\frac{1}{2 \pi i}\right) \sigma_{k}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, where σ_{k} is the k-th elementary symmetric polynomial. These symmetric polynomials have the required property.

Theorem 6.18. Let $E=P \times \rho_{\text {can }} \mathbb{C}^{n}$, where P is a principal $\mathrm{U}(n)$-bundle. Then

$$
\left.c_{k}(E)=\left[\phi_{k}\left(F_{A} \wedge \ldots \wedge F_{A}\right)\right)\right] \in H_{d R}^{2 k}(M ; \mathbb{R})
$$

is the image of the Chern class under

$$
H^{2 k}(X ; \mathbb{Z}) \rightarrow H^{2 k}(X ; \mathbb{R}) \simeq H_{d R}^{2 k}(X)
$$

The element

$$
\begin{aligned}
c(E) & =\left[\operatorname{det}\left(1-\frac{1}{2 \pi i} F_{A}\right)\right] \\
& =c_{0}(E)+c_{1}(E)+\ldots c_{n}(E)
\end{aligned}
$$

is called the total Chern class.

Proof. Sketch. Chern classes are characterized by the axioms:

- $c_{1}\left(E_{1}\right)=c_{1}\left(E_{2}\right)$ if $E_{1} \simeq E_{2}$,
- $c\left(f^{*} E\right)=f^{*} c(E)$ for any $f: N \rightarrow M$,
- $c\left(E_{1} \oplus E_{2}\right)=c\left(E_{1}\right) \cdot c\left(E_{2}\right),($ cup product $)$
- $c_{k}\left(E^{*}\right)=(-1)^{k} c_{k}(E), c\left(\underline{\mathbb{C}}^{n}\right)=1$,
- $\left\langle c_{1}(H),\left[\mathbb{C} P^{1}\right]\right\rangle=-1$ where $H \rightarrow \mathbb{C} P^{1}$ is the tautological line bundle.

The first two follow from the functoriality of the Weil homomorphism, Theorem 6.14.

When $E_{1} \oplus E_{2}$ has a reduction to a $\operatorname{GL}\left(n_{1}, \mathbb{C}\right) \times \operatorname{GL}\left(n_{2}, \mathbb{C}\right)$-bundle, take a connection respecting this reduction and apply Theorem 6.14.
E^{*} is associated to the dual representation $\mathrm{U}(n) \rightarrow\left(\mathbb{C}^{n}\right)^{*},\left(\rho_{\text {can }}\right)^{*}$: $\mathrm{u}(n) \rightarrow \operatorname{gl}(n, \mathbb{C})$ mapping $X \mapsto X^{*}=-X$.

We have verified $c_{1}(H)=-1$ last time.
Example 6.19. $\quad c_{1}(E)=-\frac{1}{2 \pi i}\left[\operatorname{tr}\left(F_{A}\right)\right]$
$c_{2}(E)=\frac{1}{8 \pi^{2}}\left[\operatorname{tr}\left(F_{A} \wedge F_{A}\right)-\operatorname{tr}\left(F_{A}\right) \wedge \operatorname{tr}\left(F_{A}\right)\right]$
Remark 6.20. If we have a reduction to $\mathrm{SU}(n)$, then $c_{1}(E)=0$.

Proof. $\left.\phi_{1}\right|_{\mathrm{su}(n)}=-\left.\frac{1}{2 \pi i} \operatorname{tr}\right|_{\mathrm{su}(n)}=0$ since elements in $\mathrm{su}(n)$ are traceless.

6.4 Pontryagin classes

Definition 6.21 (Pontryagin classes). If $E \rightarrow M$ is a real vector bundle, then $p_{k}(E)=(-1)^{k} c_{2 k}\left(E^{\mathbb{C}}\right)$ is a Pontryagin class.

The total Pontryagin class is $p(E)=1+p_{1}(E)+\ldots \in H_{d R}^{4 *}(M ; \mathbb{R})$.

Theorem 6.22. These can be obtained by the above approach from $\operatorname{det}\left(t-\frac{1}{2 \pi} X\right)=\sum_{k=0}^{n} \psi_{k}(X) t^{n-k}$ on $\mathfrak{g l}(n)$ and $\left.\psi_{2 k+1}\right|_{\mathfrak{o}(n)}=0$ for any k, where $\mathfrak{o}(n)$ is the Lie algebra of $\mathrm{O}(n)=\left\{A \mid A A^{t}=\mathrm{id}\right\}$, so $\mathfrak{o}(n)=$ $\left\{X \mid X^{t}=-X\right\}$.

For instance $\operatorname{tr}(X)=\operatorname{tr}\left(X^{t}\right)=\operatorname{tr}(-X)=-\operatorname{tr}(X)$ which implies $\operatorname{tr}(X)=0$.

Random notes

Remind Raphael about recording if needed.
Raphael's lecture notes are available at https://drive.google.com/file/d/10F8GW2ad0rY9Y0Q1UyJbJ1s_GGP9Nasb/ view?usp=sharing.

[^0]: Proof. Use (2) with ρ trivial.

